Do you want to publish a course? Click here

Automatic continuity for groups whose torsion subgroups are small

171   0   0.0 ( 0 )
 Added by Olga Varghese
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We prove that a group homomorphism $varphicolon Lto G$ from a locally compact Hausdorff group $L$ into a discrete group $G$ either is continuous, or there exists a normal open subgroup $Nsubseteq L$ such that $varphi(N)$ is a torsion group provided that $G$ does not include $mathbb{Q}$ or the $p$-adic integers $mathbb{Z}_p$ or the Prufer $p$-group $mathbb{Z}(p^infty)$ for any prime $p$ as a subgroup, and if the torsion subgroups of $G$ are small in the sense that any torsion subgroup of $G$ is artinian. In particular, if $varphi$ is surjective and $G$ additionaly does not have non-trivial normal torsion subgroups, then $varphi$ is continuous. As an application we obtain results concerning the continuity of group homomorphisms from locally compact Hausdorff groups to many groups from geometric group theory, in particular to automorphism groups of right-angled Artin groups and to Helly groups.



rate research

Read More

86 - Vincent Beck 2017
This article extends the works of Gonc{c}alves, Guaschi, Ocampo [GGO] and Marin [MAR2] on finite subgroups of the quotients of generalized braid groups by the derived subgroup of their pure braid group. We get explicit criteria for subgroups of the (complex) reflection group to lift to subgroups of this quotient. In the specific case of the classical braid group, this enables us to describe all its finite subgroups : we show that every odd-order finite group can be embedded in it, when the number of strands goes to infinity. We also determine a complete list of the irreducible reflection groups for which this quotient is a Bieberbach group.
Recent results of Qu and Tuarnauceanu describe explicitly the finite p-groups which are not elementary abelian and have the property that the number of their subgroups is maximal among p-groups of a given order. We complement these results from the bottom level up by determining completely the non-cyclic finite p-groups whose number of subgroups among p-groups of a given order is minimal.
We show that any one-relator group $G=F/langlelangle wranglerangle$ with torsion is coherent -- i.e., that every finitely generated subgroup of $G$ is finitely presented -- answering a 1974 question of Baumslag in this case.
For each finite classical group $G$, we classify the subgroups of $G$ which act transitively on a $G$-invariant set of subspaces of the natural module, where the subspaces are either totally isotropic or nondegenerate. Our proof uses the classification of the maximal factorisations of almost simple groups. As a first application of these results we classify all point-transitive subgroups of automorphisms of finite thick generalised quadrangles.
We show that the higher rank lamplighter groups, or Diestel-Leader groups $Gamma_d(q)$ for $d geq 3$, are graph automatic. This introduces a new family of graph automatic groups which are not automatic.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا