Do you want to publish a course? Click here

A Unified Approach to Fair Online Learning via Blackwell Approachability

284   0   0.0 ( 0 )
 Added by Gilles Stoltz
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We provide a setting and a general approach to fair online learning with stochastic sensitive and non-sensitive contexts. The setting is a repeated game between the Player and Nature, where at each stage both pick actions based on the contexts. Inspired by the notion of unawareness, we assume that the Player can only access the non-sensitive context before making a decision, while we discuss both cases of Nature accessing the sensitive contexts and Nature unaware of the sensitive contexts. Adapting Blackwells approachability theory to handle the case of an unknown contexts distribution, we provide a general necessary and sufficient condition for learning objectives to be compatible with some fairness constraints. This condition is instantiated on (group-wise) no-regret and (group-wise) calibration objectives, and on demographic parity as an additional constraint. When the objective is not compatible with the constraint, the provided framework permits to characterise the optimal trade-off between the two.



rate research

Read More

We extend semi-supervised learning to the problem of domain adaptation to learn significantly higher-accuracy models that train on one data distribution and test on a different one. With the goal of generality, we introduce AdaMatch, a method that unifies the tasks of unsupervised domain adaptation (UDA), semi-supervised learning (SSL), and semi-supervised domain adaptation (SSDA). In an extensive experimental study, we compare its behavior with respective state-of-the-art techniques from SSL, SSDA, and UDA on vision classification tasks. We find AdaMatch either matches or significantly exceeds the state-of-the-art in each case using the same hyper-parameters regardless of the dataset or task. For example, AdaMatch nearly doubles the accuracy compared to that of the prior state-of-the-art on the UDA task for DomainNet and even exceeds the accuracy of the prior state-of-the-art obtained with pre-training by 6.4% when AdaMatch is trained completely from scratch. Furthermore, by providing AdaMatch with just one labeled example per class from the target domain (i.e., the SSDA setting), we increase the target accuracy by an additional 6.1%, and with 5 labeled examples, by 13.6%.
Fairness-aware learning involves designing algorithms that do not discriminate with respect to some sensitive feature (e.g., race or gender). Existing work on the problem operates under the assumption that the sensitive feature available in ones training sample is perfectly reliable. This assumption may be violated in many real-world cases: for example, respondents to a survey may choose to conceal or obfuscate their group identity out of fear of potential discrimination. This poses the question of whether one can still learn fair classifiers given noisy sensitive features. In this paper, we answer the question in the affirmative: we show that if one measures fairness using the mean-difference score, and sensitive features are subject to noise from the mutually contaminated learning model, then owing to a simple identity we only need to change the desired fairness-tolerance. The requisite tolerance can be estimated by leveraging existing noise-rate estimators from the label noise literature. We finally show that our procedure is empirically effective on two case-studies involving sensitive feature censoring.
As online shopping prevails and e-commerce platforms emerge, there is a tremendous number of parcels being transported every day. Thus, it is crucial for the logistics industry on how to assign a candidate logistics route for each shipping parcel properly as it leaves a significant impact on the total logistics cost optimization and business constraints satisfaction such as transit hub capacity and delivery proportion of delivery providers. This online route-assignment problem can be viewed as a constrained online decision-making problem. Notably, the large amount (beyond ${10^5}$) of daily parcels, the variability and non-Markovian characteristics of parcel information impose difficulties on attaining (near-) optimal solution without violating constraints excessively. In this paper, we develop a model-free DRL approach named PPO-RA, in which Proximal Policy Optimization (PPO) is improved with dedicated techniques to address the challenges for route assignment (RA). The actor and critic networks use attention mechanism and parameter sharing to accommodate each incoming parcel with varying numbers and identities of candidate routes, without modeling non-Markovian parcel arriving dynamics since we make assumption of i.i.d. parcel arrival. We use recorded delivery parcel data to evaluate the performance of PPO-RA by comparing it with widely-used baselines via simulation. The results show the capability of the proposed approach to achieve considerable cost savings while satisfying most constraints.
Disparate access to resources by different subpopulations is a prevalent issue in societal and sociotechnical networks. For example, urban infrastructure networks may enable certain racial groups to more easily access resources such as high-quality schools, grocery stores, and polling places. Similarly, social networks within universities and organizations may enable certain groups to more easily access people with valuable information or influence. Here we introduce a new class of problems, Graph Augmentation for Equitable Access (GAEA), to enhance equity in networked systems by editing graph edges under budget constraints. We prove such problems are NP-hard, and cannot be approximated within a factor of $(1-tfrac{1}{3e})$. We develop a principled, sample- and time- efficient Markov Reward Process (MRP)-based mechanism design framework for GAEA. Our algorithm outperforms baselines on a diverse set of synthetic graphs. We further demonstrate the method on real-world networks, by merging public census, school, and transportation datasets for the city of Chicago and applying our algorithm to find human-interpretable edits to the bus network that enhance equitable access to high-quality schools across racial groups. Further experiments on Facebook networks of universities yield sets of new social connections that would increase equitable access to certain attributed nodes across gender groups.
Explicit and implicit bias clouds human judgement, leading to discriminatory treatment of minority groups. A fundamental goal of algorithmic fairness is to avoid the pitfalls in human judgement by learning policies that improve the overall outcomes while providing fair treatment to protected classes. In this paper, we propose a causal framework that learns optimal intervention policies from data subject to fairness constraints. We define two measures of treatment bias and infer best treatment assignment that minimizes the bias while optimizing overall outcome. We demonstrate that there is a dilemma of balancing fairness and overall benefit; however, allowing preferential treatment to protected classes in certain circumstances (affirmative action) can dramatically improve the overall benefit while also preserving fairness. We apply our framework to data containing student outcomes on standardized tests and show how it can be used to design real-world policies that fairly improve student test scores. Our framework provides a principled way to learn fair treatment policies in real-world settings.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا