Do you want to publish a course? Click here

Joule-Thomson expansion of $AdS$ black holes in Einstein-power-Yang-Mills gravity

78   0   0.0 ( 0 )
 Added by Anindya Biswas
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we study Joule-Thomson $(JT)$ expansion of non-linearly charged $AdS$ black holes in Einstein-power-Yang-Mills (EPYM) gravity in $D$ dimensions. Within the framework of extended phase space thermodynamics we identify the cosmological constant as thermodynamic pressure and the black hole mass with the enthalpy and derive the Joule-Thomson coefficient $mu$. Furthermore we have presented equations for inversion curves and the exact expression for the minimum inversion temperature. We also have calculated the ratio between the minimum of inversion $T_i^{min}$ and the critical temperature $T_c$ and obtained the analytic expression for the ratio $frac{T_i^{min}}{T_c}$ that depends explicitly on the non-linearity parameter $q$ and dimension $D$. We consider the isenthalpic curves in the $T- P$ plane for different values of the fixed black hole mass and obtain heating and cooling region. Finally we have dealt with two limiting masses which characterizes the process of Joule-Thomson expansion in the $EPYM$ black holes.



rate research

Read More

In this paper, we study Joule-Thomson expansion for Hayward-AdS black hole in the extended phase space, and obtain a Joule-Thomson expansion formula for the black hole. We plot the inversion and isenthalpic curves in the T-P plane, and determine the cooling-heating regions. The intersection points of the isenthalpic and inversion curves are exactly the inversion points discriminating the heating process from the cooling one.
In this paper, we investigate the thermal stability and Joule-Thomson expansion of some new qusitopological black hole solutions. We first study the higher-dimensional static quasitopological black hole solutions in the presence of Born-Infeld, exponential and logarithmic nonlinear electrodynamics. The stable regions of these solutions are independent of the types of the nonlinear electrodynamics. The solutions with the horizons relating to the positive constant curvature, $k=+1$, have a larger region in thermal stability, if we choose positive quasitopological coefficients, $mu_{i}>0$. We also have a review on the power Maxwell quasitopological black hole. Then, we obtain the five-dimensional Yang-Mills quasitopological black hole solution and compare with the quasitopological Maxwell solution. For large values of the electric charge, $q$, and the Yang-Mills charge, $e$, we showed that the stable range of the Maxwell quasitopological black hole is larger than the Yang-Mills one. This is while thermal stability for small charges has the same behavior for these black holes. In the following, we obtain the thermodynamic quantities for these solutions and then study the Joule-Thomson expansion. We consider the temperature changes in an isenthalpy process during this expansion. The obtained results show that the inversion curves can divide the isenthalpic ones into two parts in the inversion pressure, $P_{i}$. For $P<P_{i}$, a cooling phenomena with positive slope happens in $T-P$ diagram, while there is a heating process with negative slope for $P>P_{i}$. As the values of the nonlinear parameter, $beta$, the electric and Yang-Mills charges decrease, the temperature goes to zero with a small slope and so the heating phenomena happens slowly.
In this paper, we attempt to study the Joule-Thomson expansion for the regular black hole in an anti-de Sitter background, and obtain the inversion temperature and curve for the Bardeen-AdS black hole in the extended phase space. We investigate the isenthalpic and inversion curves for the Bardeen-AdS black hole in the T-P plane to find the intersection points between them are exactly the inversion points discriminating the heating process from the cooling one. And, the inversion curve for the regular(Bardeen)-AdS black hole is not closed and there is only a lower inversion curve in contrast with that of the Van der Walls fluid. Most importantly, we find the ratio between the minimum inversion and critical temperature for the regular(Bardeen)-AdS black hole is 0.536622, which is always larger than all the already-known ratios for the singular black hole. This larger ratio for the Bardeen-AdS black hole in contrast with the singular black hole may stem from the fact that there is a repulsive de Sitter core near the origin of the regular black hole.
87 - Rui Yin , Jing Liang , Benrong Mu 2021
The Joule-Thomson expansion is studied for Reissner-Nordstrom-Anti-de Sitter black holes with cloud of strings and quintessence, as well as its thermodynamics. The cosmological constant is treated as thermodynamic pressure, whose conjugate variable is considered as the volume. The characteristics of the Joule-Thomson expansion are studied in four main aspects with the case of $omega=-1$ and $omega=-frac{2}{3}$, including the Joule-Thomson coefficient, the inversion curves, the isenthalpic curves and the ratio between $T_{i}^{min}$ and $T_{c}$. The sign of the Joule-Thomson coefficient is possible for determining the occurrence of heating or cooling. The scattering point of the Joule-Thomson coefficient corresponds to the zero point of the Hawking temperature. Unlike the van der Waals fluids, the inversion curve is the dividing line between heating and cooling regions, above which the slope of the isenthalpic curve is positive and cooling occurs, and the cooling-heating critical point is more sensitive to $Q$. Concerning the ratio $frac{T_{i}^{min}}{T_{c}}$, we calculate it separately in the cases where only the cloud of strings, only quintessence and both are present.
101 - B. Kleihaus 1998
In Einstein-Maxwell theory black holes are uniquely determined by their mass, their charge and their angular momentum. This is no longer true in Einstein-Yang-Mills theory. We discuss sequences of neutral and charged SU(N) Einstein-Yang-Mills black holes, which are static spherically symmetric and asymptotically flat, and which carry Yang-Mills hair. Furthermore, in Einstein-Maxwell theory static black holes are spherically symmetric. We demonstrate that, in contrast, SU(2) Einstein-Yang-Mills theory possesses a sequence of black holes, which are static and only axially symmetric.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا