Do you want to publish a course? Click here

A generalized EMS algorithm for model selection with incomplete data

328   0   0.0 ( 0 )
 Added by Pingfeng Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, a so-called E-MS algorithm was developed for model selection in the presence of missing data. Specifically, it performs the Expectation step (E step) and Model Selection step (MS step) alternately to find the minimum point of the observed generalized information criteria (GIC). In practice, it could be numerically infeasible to perform the MS-step for high dimensional settings. In this paper, we propose a more simple and feasible generalized EMS (GEMS) algorithm which simply requires a decrease in the observed GIC in the MS-step and includes the original EMS algorithm as a special case. We obtain several numerical convergence results of the GEMS algorithm under mild conditions. We apply the proposed GEMS algorithm to Gaussian graphical model selection and variable selection in generalized linear models and compare it with existing competitors via numerical experiments. We illustrate its application with three real data sets.



rate research

Read More

Many proposals have emerged as alternatives to the Heckman selection model, mainly to address the non-robustness of its normal assumption. The 2001 Medical Expenditure Panel Survey data is often used to illustrate this non-robustness of the Heckman model. In this paper, we propose a generalization of the Heckman sample selection model by allowing the sample selection bias and dispersion parameters to depend on covariates. We show that the non-robustness of the Heckman model may be due to the assumption of the constant sample selection bias parameter rather than the normality assumption. Our proposed methodology allows us to understand which covariates are important to explain the sample selection bias phenomenon rather than to only form conclusions about its presence. We explore the inferential aspects of the maximum likelihood estimators (MLEs) for our proposed generalized Heckman model. More specifically, we show that this model satisfies some regularity conditions such that it ensures consistency and asymptotic normality of the MLEs. Proper score residuals for sample selection models are provided, and model adequacy is addressed. Simulated results are presented to check the finite-sample behavior of the estimators and to verify the consequences of not considering varying sample selection bias and dispersion parameters. We show that the normal assumption for analyzing medical expenditure data is suitable and that the conclusions drawn using our approach are coherent with findings from prior literature. Moreover, we identify which covariates are relevant to explain the presence of sample selection bias in this important dataset.
104 - Stephane Guerrier 2015
Motivation: Gene selection has become a common task in most gene expression studies. The objective of such research is often to identify the smallest possible set of genes that can still achieve good predictive performance. The problem of assigning tumours to a known class is a particularly important example that has received considerable attention in the last ten years. Many of the classification methods proposed recently require some form of dimension-reduction of the problem. These methods provide a single model as an output and, in most cases, rely on the likelihood function in order to achieve variable selection. Results: We propose a prediction-based objective function that can be tailored to the requirements of practitioners and can be used to assess and interpret a given problem. The direct optimization of such a function can be very difficult because the problem is potentially discontinuous and nonconvex. We therefore propose a general procedure for variable selection that resembles importance sampling to explore the feature space. Our proposal compares favorably with competing alternatives when applied to two cancer data sets in that smaller models are obtained for better or at least comparable classification errors. Furthermore by providing a set of selected models instead of a single one, we construct a network of possible models for a target prediction accuracy level.
88 - Marco Scutari 2019
Bayesian networks are a versatile and powerful tool to model complex phenomena and the interplay of their components in a probabilistically principled way. Moving beyond the comparatively simple case of completely observed, static data, which has received the most attention in the literature, in this paper we will review how Bayesian networks can model dynamic data and data with incomplete observations. Such data are the norm at the forefront of research and in practical applications, and Bayesian networks are uniquely positioned to model them due to their explainability and interpretability.
The problem of estimating missing fragments of curves from a functional sample has been widely considered in the literature. However, a majority of the reconstruction methods rely on estimating the covariance matrix or the components of its eigendecomposition, a task that may be difficult. In particular, the accuracy of the estimation might be affected by the complexity of the covariance function and the poor availability of complete functional data. We introduce a non-parametric alternative based on a novel concept of depth for partially observed functional data. Our simulations point out that the available methods are unbeatable when the covariance function is stationary, and there is a large proportion of complete data. However, our approach was superior when considering non-stationary covariance functions or when the proportion of complete functions is scarce. Moreover, even in the most severe case of having all the functions incomplete, our method performs well meanwhile the competitors are unable. The methodology is illustrated with two real data sets: the Spanish daily temperatures observed in different weather stations and the age-specific mortality by prefectures in Japan.
Causal discovery algorithms estimate causal graphs from observational data. This can provide a valuable complement to analyses focussing on the causal relation between individual treatment-outcome pairs. Constraint-based causal discovery algorithms rely on conditional independence testing when building the graph. Until recently, these algorithms have been unable to handle missing values. In this paper, we investigate two alternative solutions: Test-wise deletion and multiple imputation. We establish necessary and sufficient conditions for the recoverability of causal structures under test-wise deletion, and argue that multiple imputation is more challenging in the context of causal discovery than for estimation. We conduct an extensive comparison by simulating from benchmark causal graphs: As one might expect, we find that test-wise deletion and multiple imputation both clearly outperform list-wise deletion and single imputation. Crucially, our results further suggest that multiple imputation is especially useful in settings with a small number of either Gaussian or discrete variables, but when the dataset contains a mix of both neither method is uniformly best. The methods we compare include random forest imputation and a hybrid procedure combining test-wise deletion and multiple imputation. An application to data from the IDEFICS cohort study on diet- and lifestyle-related diseases in European children serves as an illustrating example.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا