Do you want to publish a course? Click here

A flat band-induced correlated kagome metal

117   0   0.0 ( 0 )
 Added by Linda Ye
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The notion of an electronic flat band refers to a collectively degenerate set of quantum mechanical eigenstates in periodic solids. The vanishing kinetic energy of flat bands relative to the electron-electron interaction is expected to result in a variety of many-body quantum phases of matter. Despite intense theoretical interest, systematic design and experimental realization of such flat band-driven correlated states in natural crystals have remained a challenge. Here we report the realization of a partially filled flat band in a new single crystalline kagome metal Ni$_3$In. This flat band is found to arise from the Ni $3d$-orbital wave functions localized at triangular motifs within the kagome lattice plane, where an underlying destructive interference among hopping paths flattens the dispersion. We observe unusual metallic and thermodynamic responses suggestive of the presence of local fluctuating magnetic moments originating from the flat band states, which together with non-Fermi liquid behavior indicate proximity to quantum criticality. These results demonstrate a lattice and orbital engineering approach to designing flat band-based many-body phenomena that may be applied to integrate correlation with topology and as a novel means to construct quantum criticality.



rate research

Read More

Electronic flat band systems are a fertile platform to host correlation-induced quantum phenomena such as unconventional superconductivity, magnetism and topological orders. While flat band has been established in geometrically frustrated structures, such as the kagome lattice, flat band-induced correlation effects especially in those multi-orbital bulk systems are rarely seen. Here we report negative magnetoresistance and signature of ferromagnetic fluctuations in a prototypical kagome metal CoSn, which features a flat band in proximity to the Fermi level. We find that the magnetoresistance is dictated by electronic correlations via Fermi level tuning. Combining with first principles and model calculations, we establish flat band-induced correlation effects in a multi-orbital electronic system, which opens new routes to realize unconventional superconducting and topological states in geometrically frustrated metals.
141 - Zhonghao Liu , Man Li , Qi Wang 2020
Layered kagome-lattice 3d transition metals are emerging as an exciting platform to explore the frustrated lattice geometry and quantum topology. However, the typical kagome electronic bands, characterized by sets of the Dirac-like band capped by a phase-destructive flat band, have not been clearly observed, and their orbital physics are even less well investigated. Here, we present close-to-textbook kagome bands with orbital differentiation physics in CoSn, which can be well described by a minimal tight-binding model with single-orbital hopping in Co kagome lattice. The capping flat bands with bandwidth less than 0.2 eV run through the whole Brillouin zone, especially the bandwidth of the flat band of out-of-plane orbitals is less than 0.02 eV along G-M. The energy gap induced by spin-orbit interaction at the Dirac cone of out-of-plane orbitals is much smaller than that of in-plane orbitals, suggesting orbital-selective character of the Dirac fermions.
265 - T. Y. Yang , Q. Wan , Y. H. Wang 2019
Electronic properties of kagome lattice have drawn great attention recently. In associate with flat-band induced by destructive interference and Dirac cone-type dispersion, abundant exotic phenomena have been theoretically discussed. The material realization of electronic kagome lattice is a crucial step towards comprehending kagome physics and achieving novel quantum phases. Here, combining angle-resolved photoemission spectroscopy, transport measurements and first-principle calculations, we expose a planar flat-band in paramagnetic YCr6Ge6 as a typical signature of electronic kagome lattice. We unearth that the planar flat-band arises from the dz2 electrons with intra-kagome-plane hopping forbidden by destructive interference. On the other hand, the destructive interference and flatness of the dx2-y2 and dxy bands are decomposed possibly due to additional in-plane hopping terms, but the Dirac cone-type dispersion is reserved near chemical potential. We explicitly unveil that orbital character plays an essential role to realize electronic kagome lattice in bulk materials with transition metal kagome layers. Paramagnetic YCr6Ge6 provides an opportunity to comprehend intrinsic properties of electronic kagome lattice as well as its interplays with spin orbit coupling and electronic correlation of Cr-3d electrons, and be free from complications induced by strong local moment of ions in kagome planes.
With the advanced investigations into low-dimensional systems, it has become essential to find materials having interesting lattices that can be exfoliated down to monolayer. One particular important structure is a kagome lattice with its potentially diverse and vibrant physics. We report a van-der-Waals kagome lattice material, Pd3P2S8, with several unique properties such as an intriguing flat band. The flat band is shown to arise from a possible compact-localized state of all five 4d orbitals of Pd. The diamagnetic susceptibility is precisely measured to support the calculated susceptibility obtained from the band structure. We further demonstrate that Pd3P2S8 can be exfoliated down to monolayer, which ultimately will allow the possible control of the localized states in this two-dimensional kagome lattice using the electric field gating.
We show that YCr6Ge6, comprising a kagome lattice made up of Cr atoms, is a plausible candidate compound for a kagome metal that is expected to exhibit anomalous phenomena such as flat-band ferromagnetism. Resistivity, magnetization, and heat capacity are measured on single crystals of YCr6Ge6, and band structure calculations are performed to investigate the electronic structure. Curie-Weiss-like behavior in magnetic susceptibility, T2 dependence in resistivity, and a Sommerfeld coefficient doubly enhanced from a calculated value indicate a moderately strong electron correlation. Interestingly, the in-plane resistivity is twice as large as the interplane resistivity, which is contrary to the simple expectation from the layered structure. Band structure calculations demonstrate that there are partially flat bands slightly below the Fermi level near the {Gamma} point, which is ascribed to Cr 3d3z2-r2 bands and may govern the properties of this compound.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا