Do you want to publish a course? Click here

Detection of Aerosols at Microbar Pressures in an Exoplanet Atmosphere

99   0   0.0 ( 0 )
 Added by Raissa Estrela
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Formation of hazes at microbar pressures has been explored by theoretical models of exoplanet atmospheres to explain Rayleigh scattering and/or featureless transmission spectra, however observational evidence of aerosols in the low pressure formation environments has proved elusive. Here, we show direct evidence of aerosols existing at $sim$1 microbar pressures in the atmosphere of the warm sub-Saturn WASP-69b using observations taken with Space Telescope Imaging Spectrograph (STIS) and Wide Field Camera 3 (WFC3) instruments on the Hubble Space Telescope. The transmission spectrum shows a wavelength-dependent slope induced by aerosol scattering that covers 11 scale heights of spectral modulation. Drawing on the extensive studies of haze in our Solar System, we model the transmission spectrum based on a scaled version of Jupiters haze density profile to show that WASP-69b transmission spectrum can be produced by scattering from an approximately constant density of particles extending throughout the atmospheric column from 40 millibar to microbar pressures. These results are consistent with theoretical expectations based on microphysics of the aerosol particles that have suggested haze can exist at microbar pressures in exoplanet atmospheres.



rate research

Read More

We report the detection of an atmosphere on a rocky exoplanet, GJ 1132 b, which is similar to Earth in terms of size and density. The atmospheric transmission spectrum was detected using Hubble WFC3 measurements and shows spectral signatures of aerosol scattering, HCN, and CH$_{4}$ in a low mean molecular weight atmosphere. We model the atmospheric loss process and conclude that GJ 1132 b likely lost the original H/He envelope, suggesting that the atmosphere that we detect has been reestablished. We explore the possibility of H$_{2}$ mantle degassing, previously identified as a possibility for this planet by theoretical studies, and find that outgassing from ultrareduced magma could produce the observed atmosphere. In this way we use the observed exoplanet transmission spectrum to gain insights into magma composition for a terrestrial planet. The detection of an atmosphere on this rocky planet raises the possibility that the numerous powerfully irradiated Super-Earth planets, believed to be the evaporated cores of Sub-Neptunes, may, under favorable circumstances, host detectable atmospheres.
Observations of exoplanet atmospheres have shown that aerosols, like in the Solar System, are common across a variety of temperatures and planet types. The formation and distribution of these aerosols are inextricably intertwined with the composition and thermal structure of the atmosphere. At the same time, these aerosols also interfere with our probes of atmospheric composition and thermal structure, and thus a better understanding of aerosols lead to a better understanding of exoplanet atmospheres as a whole. Here we review the current state of knowledge of exoplanet aerosols as determined from observations, modeling, and laboratory experiments. Measurements of the transmission spectra, dayside emission, and phase curves of transiting exoplanets, as well as the emission spectrum and light curves of directly imaged exoplanets and brown dwarfs have shown that aerosols are distributed inhomogeneously in exoplanet atmospheres, with aerosol distributions varying significantly with planet equilibrium temperature and gravity. Parameterized and microphysical models predict that these aerosols are likely composed of oxidized minerals like silicates for the hottest exoplanets, while at lower temperatures the dominant aerosols may be composed of alkali salts and sulfides. Particles originating from photochemical processes are also likely at low temperatures, though their formation process is highly complex, as revealed by laboratory work. In the years to come, new ground- and space-based observatories will have the capability to assess the composition of exoplanet aerosols, while new modeling and laboratory efforts will improve upon our picture of aerosol formation and dynamics.
Helium is the second-most abundant element in the Universe after hydrogen and is one of the main constituents of gas-giant planets in our Solar System. Early theoretical models predicted helium to be among the most readily detectable species in the atmospheres of exoplanets, especially in extended and escaping atmospheres. Searches for helium, however, have hitherto been unsuccessful. Here we report observations of helium on an exoplanet, at a confidence level of 4.5 standard deviations. We measured the near- infrared transmission spectrum of the warm gas giant WASP-107b and identified the narrow absorption feature of excited metastable helium at 10,833 angstroms. The amplitude of the feature, in transit depth, is 0.049 +/- 0.011 per cent in a bandpass of 98 angstroms, which is more than five times greater than what could be caused by nominal stellar chromospheric activity. This large absorption signal suggests that WASP-107b has an extended atmosphere that is eroding at a total rate of 10^10 to 3 x 10^11 grams per second (0.1-4 per cent of its total mass per billion years), and may have a comet-like tail of gas shaped by radiation pressure.
We present a primary transit observation for the ultra hot (Teq~2400K) gas giant expolanet WASP-121b, made using the Hubble Space Telescope Wide Field Camera 3 in spectroscopic mode across the 1.12-1.64 micron wavelength range. The 1.4 micron water absorption band is detected at high confidence (5.4 sigma) in the planetary atmosphere. We also reanalyze ground-based photometric lightcurves taken in the B, r, and z filters. Significantly deeper transits are measured in these optical bandpasses relative to the near-infrared wavelengths. We conclude that scattering by high-altitude haze alone is unlikely to account for this difference, and instead interpret it as evidence for titanium oxide and vanadium oxide absorption. Enhanced opacity is also inferred across the 1.12-1.3 micron wavelength range, possibly due to iron hydride absorption. If confirmed, WASP-121b will be the first exoplanet with titanium oxide, vanadium oxide, and iron hydride detected in transmission. The latter are important species in M/L dwarfs, and their presence is likely to have a significant effect on the overall physics and chemistry of the atmosphere, including the production of a strong thermal inversion.
115 - S. Rodriguez 2009
Simulations of Titans atmospheric transmission and surface reflectivity have been developed in order to estimate how Titans atmosphere and surface properties could affect performances of the Cassini radar experiment. In this paper we present a selection of models for Titans haze, vertical rain distribution, and surface composition implemented in our simulations. We collected dielectric constant values for the Cassini radar wavelength ($sim 2.2$ cm) for materials of interest for Titan: liquid methane, liquid mixture of methane-ethane, water ice and light hydrocarbon ices. Due to the lack of permittivity values for Titans haze particles in the microwave range, we performed dielectric constant ($varepsilon_r$) measurements around 2.2 cm on tholins synthesized in laboratory. We obtained a real part of $varepsilon_r$ in the range of 2-2.5 and a loss tangent between $10^{-3}$ and $5.10^{-2}$. By combining aerosol distribution models (with hypothetical condensation at low altitudes) to surface models, we find the following results: (1) Aerosol-only atmospheres should cause no loss and are essentially transparent for Cassini radar, as expected by former analysis. (2) However, if clouds are present, some atmospheric models generate significant attenuation that can reach $-50 dB$, well below the sensitivity threshold of the receiver. In such cases, a $13.78 GHz$ radar would not be able to measure echoes coming from the surface. We thus warn about possible risks of misinterpretation if a textquotedblleft wet atmospheretextquotedblright $ $is not taken into account. (3) Rough surface scattering leads to a typical response of $sim -17 dB$. These results will have important implications on future Cassini radar data analysis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا