No Arabic abstract
The concept of lumped optical nanoelements (or metactronics), wherein nanometer-scale structures act as nanoinductors, nanocapacitors and nanoresistors, has attracted a great deal of attention as a simple toolbox for engineering different nanophotonic devices in analogy with microelectronics. While recent studies of the topic have been predominantly focused on linear functionalities, nonlinear dynamics in microelectronic devices plays a crucial role and provides a majority of functions, employed in modern applications. Here, we extend the metactronics paradigm and add nonlinear dynamical modalities to those nanophotonic devices that have never been associated with optical nanoantennas. Specifically, we show that nonlinear dimer nanoantennae can operate in the regimes of tristable and astable multivibrators as well as chaos generators. The physical mechanism behind these modalities relies on the Kerr-type nonlinearity of nanoparticles in the dimer enhanced by a dipolar localized surface plasmon resonance. This allows one to provide a positive nonlinear feedback at moderate optical intensities, leading to the desired dynamical behavior via tuning the driving field parameters. Our findings shed light on a novel class of nonlinear nanophotonic devices with a tunable nonlinear dynamical response.
The development of inverse design, where computational optimization techniques are used to design devices based on certain specifications, has led to the discovery of many compact, non-intuitive structures with superior performance. Among various methods, large-scale, gradient-based optimization techniques have been one of the most important ways to design a structure containing a vast number of degrees of freedom. These techniques are made possible by the adjoint method, in which the gradient of an objective function with respect to all design degrees of freedom can be computed using only two full-field simulations. However, this approach has so far mostly been applied to linear photonic devices. Here, we present an extension of this method to modeling nonlinear devices in the frequency domain, with the nonlinear response directly included in the gradient computation. As illustrations, we use the method to devise compact photonic switches in a Kerr nonlinear material, in which low-power and high-power pulses are routed in different directions. Our technique may lead to the development of novel compact nonlinear photonic devices.
Evaluating entropy rate of high-dimensional chaos and shot noise from analog raw signals remains elusive and important in information security. We experimentally present an accurate assessment of entropy rate for physical process randomness. The entropy generation of optical-feedback laser chaos and physical randomness limit from shot noise are quantified and unambiguously discriminated using the growth rate of average permutation entropy value in memory time. The permutation entropy difference of filtered laser chaos with varying embedding delay time is investigated experimentally and theoretically. High resolution maps of the entropy difference is observed over the range of the injection-feedback parameter space. We also clarify an inverse relationship between the entropy rate and time delay signature of laser chaos over a wide range of parameters. Compared to the original chaos, the time delay signature is suppressed up to 95% with the minimum of 0.015 via frequency-band extractor, and the experiment agrees well with the theory. Our system provides a commendable entropy evaluation and source for physical random number generation.
Two elastically coupled nanomechanical resonators driven independently near their resonance frequencies show intricate nonlinear dynamics. The dynamics provide a scheme for realizing a nanomechanical system with tunable frequency and nonlinear properties. For large vibration amplitudes the system develops spontaneous oscillations of amplitude modulation that also show period doubling transitions and chaos. The complex nonlinear dynamics are quantitatively predicted by a simple theoretical model.
Passive Kerr cavities driven by coherent laser fields display a rich landscape of nonlinear physics, including bistability, pattern formation, and localised dissipative structures (solitons). Their conceptual simplicity has for several decades offered an unprecedented window into nonlinear cavity dynamics, providing insights into numerous systems and applications ranging from all-optical memory devices to microresonator frequency combs. Yet despite the decades of study, a recent theoretical study has surprisingly alluded to an entirely new and unexplored paradigm in the regime where nonlinearly tilted cavity resonances overlap with one another [T. Hansson and S. Wabnitz, J. Opt. Soc. Am. B 32, 1259 (2015)]. We have used synchronously driven fiber ring resonators to experimentally access this regime, and observed the rise of new nonlinear dissipative states. Specifically, we have observed, for the first time to the best of our knowledge, the stable coexistence of dissipative (cavity) solitons and extended modulation instability (Turing) patterns, and performed real time measurements that unveil the dynamics of the ensuing nonlinear structures. When operating in the regime of continuous wave tristability, we have further observed the coexistence of two distinct cavity soliton states, one of which can be identified as a super cavity soliton as predicted by Hansson and Wabnitz. Our experimental findings are in excellent agreement with theoretical analyses and numerical simulations of the infinite-dimensional Ikeda map that governs the cavity dynamics. The results from our work reveal that experimental systems can support complex combinations of distinct nonlinear states, and they could have practical implications to future microresonator-based frequency comb sources.
Optical non-linearities, such as thermo-optic effects and free-carrier-dispersion, are often considered as undesired effects in silicon-based resonators and, more specifically, optomechanical (OM) cavities, affecting the relative detuning between an optical resonance and the excitation laser. However, the interplay between such mechanisms could also enable unexpected physical phenomena to be used in new applications. In the present work, we exploit those non-linearities and their intercoupling with the mechanical degrees of freedom of a silicon OM nanobeam to unveil a rich set of fundamentally different complex dynamics. By smoothly changing the parameters of the excitation laser, namely its power and wavelength, we demonstrate accurate control for activating bi-dimensional and tetra-dimensional limit-cycles, a period doubling route and chaos. In addition, by scanning the laser parameters in opposite senses we demonstrate bistability and hysteresis between bi-dimensional and tetra-dimensional limit-cycles, between different coherent mechanical states and between tetra-dimensional limit-cycles and chaos. As a result of implementing the Rosenstein algorithm to the experimental time series we have extracted a Largest Lyapunov Exponent of LLE=1.3x10^5 s-1, which is between one and two orders of magnitude lower than the typical oscillating frequencies of the system. Most of the experimental features can be well reproduced with a model of first-order non-linear differential equations coupled through the number of intracavity photons. Our findings open several routes towards exploiting silicon-based OM photonic crystals for systems with memory and, more specifically, for chaos based applications such as secure information transfer or sensing.