Discrete Quantum Geometry and Intrinsic Spin Hall Effect


Abstract in English

We show that the quantum geometry of the Fermi surface can be numerically described by a 3-dimensional discrete quantum manifold. This approach not only avoids singularities in the Fermi sea, but it also enables the precise computation of the intrinsic Hall conductivity resolved in spin, as well as any other local properties of the Fermi surface. The method assures numerical accuracy when the Fermi level is arbitrarily close to singularities, and it remains robust when Kramers degeneracy is protected by symmetry. The approach is demonstrated by calculating the anomalous Hall and spin Hall conductivities of a 2-band lattice model of a Weyl semimetal and a full-band ab-initio model of zincblende GaAs.

Download