Do you want to publish a course? Click here

Attention-Based Keyword Localisation in Speech using Visual Grounding

149   0   0.0 ( 0 )
 Added by Kayode Olaleye
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Visually grounded speech models learn from images paired with spoken captions. By tagging images with soft text labels using a trained visual classifier with a fixed vocabulary, previous work has shown that it is possible to train a model that can detect whether a particular text keyword occurs in speech utterances or not. Here we investigate whether visually grounded speech models can also do keyword localisation: predicting where, within an utterance, a given textual keyword occurs without any explicit text-based or alignment supervision. We specifically consider whether incorporating attention into a convolutional model is beneficial for localisation. Although absolute localisation performance with visually supervised models is still modest (compared to using unordered bag-of-word text labels for supervision), we show that attention provides a large gain in performance over previous visually grounded models. As in many other speech-image studies, we find that many of the incorrect localisations are due to semantic confusions, e.g. locating the word backstroke for the query keyword swimming.



rate research

Read More

As an important part of speech recognition technology, automatic speech keyword recognition has been intensively studied in recent years. Such technology becomes especially pivotal under situations with limited infrastructures and computational resources, such as voice command recognition in vehicles and robot interaction. At present, the mainstream methods in automatic speech keyword recognition are based on long short-term memory (LSTM) networks with attention mechanism. However, due to inevitable information losses for the LSTM layer caused during feature extraction, the calculated attention weights are biased. In this paper, a novel approach, namely Multi-layer Attention Mechanism, is proposed to handle the inaccurate attention weights problem. The key idea is that, in addition to the conventional attention mechanism, information of layers prior to feature extraction and LSTM are introduced into attention weights calculations. Therefore, the attention weights are more accurate because the overall model can have more precise and focused areas. We conduct a comprehensive comparison and analysis on the keyword spotting performances on convolution neural network, bi-directional LSTM cyclic neural network, and cyclic neural network with the proposed attention mechanism on Google Speech Command datasets V2 datasets. Experimental results indicate favorable results for the proposed method and demonstrate the validity of the proposed method. The proposed multi-layer attention methods can be useful for other researches related to object spotting.
Automatic Speech Recognition (ASR) using multiple microphone arrays has achieved great success in the far-field robustness. Taking advantage of all the information that each array shares and contributes is crucial in this task. Motivated by the advances of joint Connectionist Temporal Classification (CTC)/attention mechanism in the End-to-End (E2E) ASR, a stream attention-based multi-array framework is proposed in this work. Microphone arrays, acting as information streams, are activated by separate encoders and decoded under the instruction of both CTC and attention networks. In terms of attention, a hierarchical structure is adopted. On top of the regular attention networks, stream attention is introduced to steer the decoder toward the most informative encoders. Experiments have been conducted on AMI and DIRHA multi-array corpora using the encoder-decoder architecture. Compared with the best single-array results, the proposed framework has achieved relative Word Error Rates (WERs) reduction of 3.7% and 9.7% in the two datasets, respectively, which is better than conventional strategies as well.
The use of phonological features (PFs) potentially allows language-specific phones to remain linked in training, which is highly desirable for information sharing for multilingual and crosslingual speech recognition methods for low-resourced languages. A drawback suffered by previous methods in using phonological features is that the acoustic-to-PF extraction in a bottom-up way is itself difficult. In this paper, we propose to join phonology driven phone embedding (top-down) and deep neural network (DNN) based acoustic feature extraction (bottom-up) to calculate phone probabilities. The new method is called JoinAP (Joining of Acoustics and Phonology). Remarkably, no inversion from acoustics to phonological features is required for speech recognition. For each phone in the IPA (International Phonetic Alphabet) table, we encode its phonological features to a phonological-vector, and then apply linear or nonlinear transformation of the phonological-vector to obtain the phone embedding. A series of multilingual and crosslingual (both zero-shot and few-shot) speech recognition experiments are conducted on the CommonVoice dataset (German, French, Spanish and Italian) and the AISHLL-1 dataset (Mandarin), and demonstrate the superiority of JoinAP with nonlinear phone embeddings over both JoinAP with linear phone embeddings and the traditional method with flat phone embeddings.
The attention mechanism of the Listen, Attend and Spell (LAS) model requires the whole input sequence to calculate the attention context and thus is not suitable for online speech recognition. To deal with this problem, we propose multi-head monotonic chunk-wise attention (MTH-MoChA), an improved version of MoChA. MTH-MoChA splits the input sequence into small chunks and computes multi-head attentions over the chunks. We also explore useful training strategies such as LSTM pooling, minimum world error rate training and SpecAugment to further improve the performance of MTH-MoChA. Experiments on AISHELL-1 data show that the proposed model, along with the training strategies, improve the character error rate (CER) of MoChA from 8.96% to 7.68% on test set. On another 18000 hours in-car speech data set, MTH-MoChA obtains 7.28% CER, which is significantly better than a state-of-the-art hybrid system.
Multimodal learning allows us to leverage information from multiple sources (visual, acoustic and text), similar to our experience of the real world. However, it is currently unclear to what extent auxiliary modalities improve performance over unimodal models, and under what circumstances the auxiliary modalities are useful. We examine the utility of the auxiliary visual context in Multimodal Automatic Speech Recognition in adversarial settings, where we deprive the models from partial audio signal during inference time. Our experiments show that while MMASR models show significant gains over traditional speech-to-text architectures (upto 4.2% WER improvements), they do not incorporate visual information when the audio signal has been corrupted. This shows that current methods of integrating the visual modality do not improve model robustness to noise, and we need better visually grounded adaptation techniques.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا