Do you want to publish a course? Click here

Projective Resampling Imputation Mean Estimation Method for Missing Covariates Problem

105   0   0.0 ( 0 )
 Added by Zishu Zhan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Missing data is a common problem in clinical data collection, which causes difficulty in the statistical analysis of such data. To overcome problems caused by incomplete data, we propose a new imputation method called projective resampling imputation mean estimation (PRIME), which can also address ``the curse of dimensionality problem in imputation with less information loss. We use various sample sizes, missing-data rates, covariate correlations, and noise levels in simulation studies, and all results show that PRIME outperformes other methods such as iterative least-squares estimation (ILSE), maximum likelihood (ML), and complete-case analysis (CC). Moreover, we conduct a study of influential factors in cardiac surgery-associated acute kidney injury (CSA-AKI), which show that our method performs better than the other models. Finally, we prove that PRIME has a consistent property under some regular conditions.



rate research

Read More

Missing covariate data commonly occur in epidemiological and clinical research, and are often dealt with using multiple imputation (MI). Imputation of partially observed covariates is complicated if the substantive model is non-linear (e.g. Cox proportional hazards model), or contains non-linear (e.g. squared) or interaction terms, and standard software implementations of MI may impute covariates from models that are incompatible with such substantive models. We show how imputation by fully conditional specification, a popular approach for performing MI, can be modified so that covariates are imputed from models which are compatible with the substantive model. We investigate through simulation the performance of this proposal, and compare it to existing approaches. Simulation results suggest our proposal gives consistent estimates for a range of common substantive models, including models which contain non-linear covariate effects or interactions, provided data are missing at random and the assumed imputation models are correctly specified and mutually compatible.
While a randomized controlled trial (RCT) readily measures the average treatment effect (ATE), this measure may need to be generalized to the target population to account for a sampling bias in the RCTs population. Identifying this target population treatment effect needs covariates in both sets to capture all treatment effect modifiers that are shifted between the two sets. Standard estimators then use either weighting (IPSW), outcome modeling (G-formula), or combine the two in doubly robust approaches (AIPSW). However such covariates are often not available in both sets. Therefore, after completing existing proofs on the complete case consistency of those three estimators, we compute the expected bias induced by a missing covariate, assuming a Gaussian distribution and a semi-parametric linear model. This enables sensitivity analysis for each missing covariate pattern, giving the sign of the expected bias. We also show that there is no gain in imputing a partially-unobserved covariate. Finally we study the replacement of a missing covariate by a proxy. We illustrate all these results on simulations, as well as semi-synthetic benchmarks using data from the Tennessee Student/Teacher Achievement Ratio (STAR), and with a real-world example from critical care medicine.
Missing data is a common problem which has consistently plagued statisticians and applied analytical researchers. While replacement methods like mean-based or hot deck imputation have been well researched, emerging imputation techniques enabled through improved computational resources have had limited formal assessment. This study formally considers five more recently developed imputation methods: Amelia, Mice, mi, Hmisc and missForest - compares their performances using RMSE against actual values and against the well-established mean-based replacement approach. The RMSE measure was consolidated by method using a ranking approach. Our results indicate that the missForest algorithm performed best and the mi algorithm performed worst.
Missing data imputation can help improve the performance of prediction models in situations where missing data hide useful information. This paper compares methods for imputing missing categorical data for supervised classification tasks. We experiment on two machine learning benchmark datasets with missing categorical data, comparing classifiers trained on non-imputed (i.e., one-hot encoded) or imputed data with different levels of additional missing-data perturbation. We show imputation methods can increase predictive accuracy in the presence of missing-data perturbation, which can actually improve prediction accuracy by regularizing the classifier. We achieve the state-of-the-art on the Adult dataset with missing-data perturbation and k-nearest-neighbors (k-NN) imputation.
89 - Aude Sportisse 2018
Missing values challenge data analysis because many supervised and unsupervised learning methods cannot be applied directly to incomplete data. Matrix completion based on low-rank assumptions are very powerful solution for dealing with missing values. However, existing methods do not consider the case of informative missing values which are widely encountered in practice. This paper proposes matrix completion methods to recover Missing Not At Random (MNAR) data. Our first contribution is to suggest a model-based estimation strategy by modelling the missing mechanism distribution. An EM algorithm is then implemented, involving a Fast Iterative Soft-Thresholding Algorithm (FISTA). Our second contribution is to suggest a computationally efficient surrogate estimation by implicitly taking into account the joint distribution of the data and the missing mechanism: the data matrix is concatenated with the mask coding for the missing values; a low-rank structure for exponential family is assumed on this new matrix, in order to encode links between variables and missing mechanisms. The methodology that has the great advantage of handling different missing value mechanisms is robust to model specification errors.The performances of our methods are assessed on the real data collected from a trauma registry (TraumaBase ) containing clinical information about over twenty thousand severely traumatized patients in France. The aim is then to predict if the doctors should administrate tranexomic acid to patients with traumatic brain injury, that would limit excessive bleeding.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا