Charge Carrier Transport in Iron Pyrite Thin Films: Disorder Induced Variable Range Hopping


Abstract in English

The origin of p-type conductivity and the mechanism responsible for low carrier mobility was investigated in pyrite (FeS2) thin films. Temperature dependent resistivity measurements were performed on polycrystalline and nanostructured thin films prepared by three different methods. Films have a high hole density and low mobility regardless of the method used for their preparation. The charge transport mechanism is determined to be nearest neighbour hopping (NNH) at near room temperature with Mott-type variable range hopping (VRH) of holes via localized states occurring at lower temperatures. Density functional theory (DFT) predicts that sulfur vacancy induced localized defect states will be situated within the band gap with the charge remaining localized around the defect. The data indicate that the electronic properties including hopping transport in pyrite thin films can be correlated to sulfur vacancy related defect. The results provide insights on electronic properties of pyrite thin films and its implications for charge transport

Download