Gate control of spin-layer-locking FETs and application to monolayer LuIO


Abstract in English

A recent 2D spinFET concept proposes to switch electrostatically between two separate sublayers with strong and opposite intrinsic Rashba effects. This concept exploits the spin-layer locking mechanism present in centrosymmetric materials with local dipole fields, where a weak electric field can easily manipulate just one of the spin channels. Here, we propose a novel monolayer material within this family, lutetium oxide iodide (LuIO). It displays one of the largest Rashba effects among 2D materials (up to $k_R = 0.08$ {AA}$^{-1}$), leading to a $pi/2$ rotation of the spins over just 1 nm. The monolayer had been predicted to be exfoliable from its experimentally-known 3D bulk counterpart, with a binding energy even lower than graphene. We characterize and model with first-principles simulations the interplay of the two gate-controlled parameters for such devices: doping and spin channel selection. We show that the ability to split the spin channels in energy diminishes with doping, leading to specific gate-operation guidelines that can apply to all devices based on spin-layer locking.

Download