We propose a gauged two-Higgs-doublet model (2HDM) featuring an anomalous Peccei-Quinn symmetry, $U(1)_{PQ}$. Dangerous tree-level flavour-changing neutral currents, common in 2HDMs, are forbidden by the extra gauge symmetry, $U(1)_X$. In our construction, the solutions to the important issues of neutrino masses, dark matter and the strong CP problem are interrelated. Neutrino masses are generated via a Dirac seesaw mechanism and are suppressed by the ratio of the $U(1)_X$ and the $U(1)_{PQ}$ breaking scales. Naturally small neutrino masses suggest that the breaking of $U(1)_X$ occurs at a relatively low scale, which may lead to observable signals in near-future experiments. Interestingly, spontaneous symmetry breaking does not lead to mixing between the $U(1)_X$ gauge boson, $Z^prime$, and the standard $Z$. For the expected large values of the $U(1)_{PQ}$ scale, the associated axion becomes invisible, with DFSZ-like couplings, and may account for the observed abundance of cold dark matter. Moreover, a viable parameter space region, which falls within the expected sensitivities of forthcoming axion searches, is identified. We also observe that the flavour-violating process of kaon decaying into pion plus axion, $K^+ to pi^+ a$, is further suppressed by the $U(1)_X$ scale, providing a rather weak lower bound for the axion decay constant $f_a$.