Training like Playing: A Reinforcement Learning And Knowledge Graph-based framework for building Automatic Consultation System in Medical Field


Abstract in English

We introduce a framework for AI-based medical consultation system with knowledge graph embedding and reinforcement learning components and its implement. Our implement of this framework leverages knowledge organized as a graph to have diagnosis according to evidence collected from patients recurrently and dynamically. According to experiment we designed for evaluating its performance, it archives a good result. More importantly, for getting better performance, researchers can implement it on this framework based on their innovative ideas, well designed experiments and even clinical trials.

Download