Lvio-Fusion: A Self-adaptive Multi-sensor Fusion SLAM Framework Using Actor-critic Method


Abstract in English

State estimation with sensors is essential for mobile robots. Due to different performance of sensors in different environments, how to fuse measurements of various sensors is a problem. In this paper, we propose a tightly coupled multi-sensor fusion framework, Lvio-Fusion, which fuses stereo camera, Lidar, IMU, and GPS based on the graph optimization. Especially for urban traffic scenes, we introduce a segmented global pose graph optimization with GPS and loop-closure, which can eliminate accumulated drifts. Additionally, we creatively use a actor-critic method in reinforcement learning to adaptively adjust sensors weight. After training, actor-critic agent can provide the system better and dynamic sensors weight. We evaluate the performance of our system on public datasets and compare it with other state-of-the-art methods, which shows that the proposed method achieves high estimation accuracy and robustness to various environments. And our implementations are open source and highly scalable.

Download