Gravitational lensing by an extended mass distribution


Abstract in English

We continue our investigation of the optical properties of the solar gravitational lens (SGL). We treat the Sun as an extended axisymmetric body and model its gravitational field using zonal harmonics. We consider a point source that is positioned at a large but finite distance from the Sun and, using our new angular eikonal method, we established the electro-magnetic (EM) field on the image plane in the focal region behind the SGL and derive the SGLs impulse response in the form of its point-spread function (PSF). The expression that we derive describes the extended Sun in all regions of interest, including the regions of strong and weak interference and the region of geometric optics. The result is in the form of a single integral with respect to the azimuthal angle of the impact parameter, covering all lensing regimes of the SGL. The same expression can be used to describe gravitational lensing by a compact axisymmetric mass distribution, characterized by small deviations from spherical symmetry. It is valid in all lensing regimes. We also derive results that describe the intensity of light observed by an imaging telescope in the focal region. We present results of numerical simulations showing the view by a telescope that moves in the image plane toward the optical axis. We consider imaging of both point and extended sources. We show that while point sources yield a number of distinct images consistent with the caustics due to zonal harmonics of a particular order (e.g., Einstein cross), extended sources always result in the formation of an Einstein ring. These results represent the most comprehensive wave-theoretical treatment of gravitational lensing in the weak gravitational field of a compact axisymmetric gravitating object.

Download