Do you want to publish a course? Click here

Lessons learned from hyper-parameter tuning for microservice candidate identification

81   0   0.0 ( 0 )
 Added by Rahul Yedida
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

When optimizing software for the cloud, monolithic applications need to be partitioned into many smaller *microservices*. While many tools have been proposed for this task, we warn that the evaluation of those approaches has been incomplete; e.g. minimal prior exploration of hyperparameter optimization. Using a set of open source Java EE applications, we show here that (a) such optimization can significantly improve microservice partitioning; and that (b) an open issue for future work is how to find which optimizer works best for different problems. To facilitate that future work, see [https://github.com/yrahul3910/ase-tuned-mono2micro](https://github.com/yrahul3910/ase-tuned-mono2micro) for a reproduction package for this research.

rate research

Read More

TextAttack is an open-source Python toolkit for adversarial attacks, adversarial training, and data augmentation in NLP. TextAttack unites 15+ papers from the NLP adversarial attack literature into a single framework, with many components reused across attacks. This framework allows both researchers and developers to test and study the weaknesses of their NLP models. To build such an open-source NLP toolkit requires solving some common problems: How do we enable users to supply models from different deep learning frameworks? How can we build tools to support as many different datasets as possible? We share our insights into developing a well-written, well-documented NLP Python framework in hope that they can aid future development of similar packages.
Machine learning is a powerful method for modeling in different fields such as education. Its capability to accurately predict students success makes it an ideal tool for decision-making tasks related to higher education. The accuracy of machine learning models depends on selecting the proper hyper-parameters. However, it is not an easy task because it requires time and expertise to tune the hyper-parameters to fit the machine learning model. In this paper, we examine the effectiveness of automated hyper-parameter tuning techniques to the realm of students success. Therefore, we develop two automated Hyper-Parameter Optimization methods, namely grid search and random search, to assess and improve a previous studys performance. The experiment results show that applying random search and grid search on machine learning algorithms improves accuracy. We empirically show automated methods superiority on real-world educational data (MIDFIELD) for tuning HPs of conventional machine learning classifiers. This work emphasizes the effectiveness of automated hyper-parameter optimization while applying machine learning in the education field to aid faculties, directors, or non-expert users decisions to improve students success.
This paper proposes the first-ever algorithmic framework for tuning hyper-parameters of stochastic optimization algorithm based on reinforcement learning. Hyper-parameters impose significant influences on the performance of stochastic optimization algorithms, such as evolutionary algorithms (EAs) and meta-heuristics. Yet, it is very time-consuming to determine optimal hyper-parameters due to the stochastic nature of these algorithms. We propose to model the tuning procedure as a Markov decision process, and resort the policy gradient algorithm to tune the hyper-parameters. Experiments on tuning stochastic algorithms with different kinds of hyper-parameters (continuous and discrete) for different optimization problems (continuous and discrete) show that the proposed hyper-parameter tuning algorithms do not require much less running times of the stochastic algorithms than bayesian optimization method. The proposed framework can be used as a standard tool for hyper-parameter tuning in stochastic algorithms.
124 - Zhiyun Lu , Chao-Kai Chiang , 2019
We study a budgeted hyper-parameter tuning problem, where we optimize the tuning result under a hard resource constraint. We propose to solve it as a sequential decision making problem, such that we can use the partial training progress of configurations to dynamically allocate the remaining budget. Our algorithm combines a Bayesian belief model which estimates the future performance of configurations, with an action-value function which balances exploration-exploitation tradeoff, to optimize the final output. It automatically adapts the tuning behaviors to different constraints, which is useful in practice. Experiment results demonstrate superior performance over existing algorithms, including the-state-of-the-art one, on real-world tuning tasks across a range of different budgets.
As neural networks are increasingly employed in machine learning practice, how to efficiently share limited training resources among a diverse set of model training tasks becomes a crucial issue. To achieve better utilization of the shared resources, we explore the idea of jointly training multiple neural network models on a single GPU in this paper. We realize this idea by proposing a primitive, called pack. We further present a comprehensive empirical study of pack and end-to-end experiments that suggest significant improvements for hyperparameter tuning. The results suggest: (1) packing two models can bring up to 40% performance improvement over unpacked setups for a single training step and the improvement increases when packing more models; (2) the benefit of the pack primitive largely depends on a number of factors including memory capacity, chip architecture, neural network structure, and batch size; (3) there exists a trade-off between packing and unpacking when training multiple neural network models on limited resources; (4) a pack-aware Hyperband is up to 2.7x faster than the original Hyperband, with this improvement growing as memory size increases and subsequently the density of models packed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا