Do you want to publish a course? Click here

On D2D Caching with Uncoded Cache Placement

373   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We consider a cache-aided wireless device-to-device (D2D) network under the constraint of one-shot delivery, where the placement phase is orchestrated by a central server. We assume that the devices caches are filled with uncoded data, and the whole file database at the server is made available in the collection of caches. Following this phase, the files requested by the users are serviced by inter-device multicast communication. For such a system setting, we provide the exact characterization of load-memory trade-off, by deriving both the minimum average and the minimum peak sum-loads of links between devices, for a given individual memory size at disposal of each user.



rate research

Read More

72 - Yong Deng , Min Dong 2021
For a caching system with multiple users, we aim to characterize the memory-rate tradeoff for caching with uncoded cache placement, under nonuniform file popularity. Focusing on the modified coded caching scheme (MCCS) recently proposed by Yu, etal., we formulate the cache placement optimization problem for the MCCS to minimize the average delivery rate under nonuniform file popularity, restricting to a class of popularity-first placements. We then present two information-theoretic lower bounds on the average rate for caching with uncoded placement, one for general cache placements and the other restricted to the popularity-first placements. By comparing the average rate of the optimized MCCS with the lower bounds, we prove that the optimized MCCS attains the general lower bound for the two-user case, providing the exact memory-rate tradeoff. Furthermore, it attains the popularity-first-based lower bound for the case of general K users with distinct file requests. In these two cases, our results also reveal that the popularity-first placement is optimal for the MCCS, and zero-padding used in coded delivery incurs no loss of optimality. For the case of K users with redundant file requests, our analysis shows that there may exist a gap between the optimized MCCS and the lower bounds due to zero-padding. We next fully characterize the optimal popularity-first cache placement for the MCCS, which is shown to possess a simple file-grouping structure and can be computed via an efficient algorithm using closed-form expressions. Finally, we extend our study to accommodate both nonuniform file popularity and sizes, where we show that the optimized MCCS attains the lower bound for the two-user case, providing the exact memory-rate tradeoff. Numerical results show that, for general settings, the gap between the optimized MCCS and the lower bound only exists in limited cases and is very small.
93 - Behzad Asadi , Lawrence Ong , 2018
We address a centralized caching problem with unequal cache sizes. We consider a system with a server of files connected through a shared error-free link to a group of cache-enabled users where one subgroup has a larger cache size than the other. We propose an explicit caching scheme for the considered system aimed at minimizing the load of worst-case demands over the shared link. As suggested by numerical evaluations, our scheme improves upon the best existing explicit scheme by having a lower worst-case load; also, our scheme performs within a multiplicative factor of 1.11 from the scheme that can be obtained by solving an optimisation problem in which the number of parameters grows exponentially with the number of users.
This paper considers a cache-aided device-to-device (D2D) system where the users are equipped with cache memories of different size. During low traffic hours, a server places content in the users cache memories, knowing that the files requested by the users during peak traffic hours will have to be delivered by D2D transmissions only. The worst-case D2D delivery load is minimized by jointly designing the uncoded cache placement and linear coded D2D delivery. Next, a novel lower bound on the D2D delivery load with uncoded placement is proposed and used in explicitly characterizing the minimum D2D delivery load (MD2DDL) with uncoded placement for several cases of interest. In particular, having characterized the MD2DDL for equal cache sizes, it is shown that the same delivery load can be achieved in the network with users of unequal cache sizes, provided that the smallest cache size is greater than a certain threshold. The MD2DDL is also characterized in the small cache size regime, the large cache size regime, and the three-user case. Comparisons of the server-based delivery load with the D2D delivery load are provided. Finally, connections and mathematical parallels between cache-aided D2D systems and coded distributed computing (CDC) systems are discussed.
In this work, we study coded placement in caching systems where the users have unequal cache sizes and demonstrate its performance advantage. In particular, we propose a caching scheme with coded placement for three-user systems that outperforms the best caching scheme with uncoded placement. In our proposed scheme, users cache both uncoded and coded pieces of the files, and the coded pieces at the users with large memories are decoded using the unicast/multicast signals intended to serve users with smaller memories. Furthermore, we extend the proposed scheme to larger systems and show the reduction in delivery load with coded placement compared to uncoded placement.
In this paper, we study the resource allocation problem for a cooperative device-to-device (D2D)-enabled wireless caching network, where each user randomly caches popular contents to its memory and shares the contents with nearby users through D2D links. To enhance the throughput of spectrum sharing D2D links, which may be severely limited by the interference among D2D links, we enable the cooperation among some of the D2D links to eliminate the interference among them. We formulate a joint link scheduling and power allocation problem to maximize the overall throughput of cooperative D2D links (CDLs) and non-cooperative D2D links (NDLs), which is NP-hard. To solve the problem, we decompose it into two subproblems that maximize the sum rates of the CDLs and the NDLs, respectively. For CDL optimization, we propose a semi-orthogonal-based algorithm for joint user scheduling and power allocation. For NDL optimization, we propose a novel low-complexity algorithm to perform link scheduling and develop a Difference of Convex functions (D.C.) programming method to solve the non-convex power allocation problem. Simulation results show that the cooperative transmission can significantly increase both the number of served users and the overall system throughput.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا