No Arabic abstract
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks such as parallel computation and circuit optimisation. Crucially, the communication overhead introduced by the allotment process should be minimised -- a key motivation behind the communication complexity problem (CCP). Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts. Furthermore, the connection between quantum CCPs and nonlocality provides an information-theoretic insights into fundamental quantum mechanics. Here we connect quantum CCPs with a generalised nonlocality framework -- beyond the paradigmatic Bells theorem -- by incorporating the underlying causal structure, which governs the distributed task, into a so-called nonlocal hidden variable model. We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities, whose violation is both necessary and sufficient for a quantum gain. We experimentally implement a multipartite CCP akin to the guess-your-neighbour-input scenario, and demonstrate a quantum advantage when multipartite Greenberger-Horne-Zeilinger (GHZ) states are shared among three users.
The question of how large Bell inequality violations can be, for quantum distributions, has been the object of much work in the past several years. We say that a Bell inequality is normalized if its absolute value does not exceed 1 for any classical (i.e. local) distribution. Upper and (almost) tight lower bounds have been given for the quantum violation of these Bell inequalities in terms of number of outputs of the distribution, number of inputs, and the dimension of the shared quantum states. In this work, we revisit normalized Bell inequalities together with another family: inefficiency-resistant Bell inequalities. To be inefficiency-resistant, the Bell value must not exceed 1 for any local distribution, including those that can abort. This makes the Bell inequality resistant to the detection loophole, while a normalized Bell inequality is resistant to general local noise. Both these families of Bell inequalities are closely related to communication complexity lower bounds. We show how to derive large violations from any gap between classical and quantum communication complexity, provided the lower bound on classical communication is proven using these lower bound techniques. This leads to inefficiency-resistant violations that can be exponential in the size of the inputs. Finally, we study resistance to noise and inefficiency for these Bell inequalities.
Bells theorem proves that quantum theory is inconsistent with local physical models. It has propelled research in the foundations of quantum theory and quantum information science. As a fundamental feature of quantum theory, it impacts predictions far beyond the traditional scenario of the Einstein-Podolsky-Rosen paradox. In the last decade, the investigation of nonlocality has moved beyond Bells theorem to consider more sophisticated experiments that involve several independent sources which distribute shares of physical systems among many parties in a network. Network scenarios, and the nonlocal correlations that they give rise to, lead to phenomena that have no counterpart in traditional Bell experiments, thus presenting a formidable conceptual and practical challenge. This review discusses the main concepts, methods, results and future challenges in the emerging topic of Bell nonlocality in networks.
We discuss the connection between the incompatibility of quantum measurements, as captured by the notion of joint measurability, and the violation of Bell inequalities. Specifically, we present explicitly a given a set of non jointly measurable POVMs $mathcal{M}_A$ with the following property. Considering a bipartite Bell test where Alice uses $mathcal{M}_A$, then for any possible shared entangled state $rho$ and any set of (possibly infinitely many) POVMs $mathcal{N}_B$ performed by Bob, the resulting statistics admits a local model, and can thus never violate any Bell inequality. This shows that quantum measurement incompatibility does not imply Bell nonlocality in general.
Quantum nonlocality, one of the most important features of quantum mechanics, is normally connected in experiments with the violation of Bell-Clauser-Horne (Bell-CH) inequalities. We propose effective methods for the rearrangement and linear inequality to prove a large variety of Bell-CH inequalities. We also derive a set of Bell-CH inequalities by using these methods which can be violated in some quantum entangled states.
In order to reject the local hidden variables hypothesis, the usefulness of a Bell inequality can be quantified by how small a p-value it will give for a physical experiment. Here we show that to obtain a small expected p-value it is sufficient to have a large gap between the local and Tsirelson bounds of the Bell inequality, when it is formulated as a nonlocal game. We develop an algorithm for transforming an arbitrary Bell inequality into an equivalent nonlocal game with the largest possible gap, and show its results for the CGLMP and $I_{nn22}$ inequalities. We present explicit examples of Bell inequalities with gap arbitrarily close to one, and show that this makes it possible to reject local hidden variables with arbitrarily small p-value in a single shot, without needing to collect statistics. We also develop an algorithm for calculating local bounds of general Bell inequalities which is significantly faster than the naive approach, which may be of independent interest.