Do you want to publish a course? Click here

Non-Abelian operation of molecular topological superconductor by n-MOSFET

142   0   0.0 ( 0 )
 Added by Dong Hack Suh
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Braiding operations are challenging to create topological quantum computers. It is unclear whether braiding operations can be executed with any materials. Although various calculations based on Majorana fermions show braiding possibilities, a braiding operation with a Majorana fermion has not yet been experimentally proven. Herein, braiding operations are demonstrated using a molecular topological superconductor (MTSC) that utilizes the topological properties intrinsic in molecules. The braiding operations were implemented by controlling two MTSC modules made by pelletizing crystals of 4,5,9,10-tetrakis(dodecyloxy)pyrene, which is proposed as the first MTSC material through n-MOSFETs. It shows the elements of topological quantum computers that can be demonstrated without an external magnetic field at room temperature.



rate research

Read More

Plasmons, quantized collective oscillations of electrons, have been observed in metals and semiconductors. Such massive electrons have been the basic ingredients of research in plasmonics and optical metamaterials.1 Also, Dirac plasmons have been observed in graphene, two-dimensional electron systems and topological insulators (TIs). A nontrivial Z2 topology of the bulk valence band leads to the emergence of massless Dirac fermions on the surface in TIs.2,3 Although Dirac plasmons can be formed through additional grating or patterning, their characteristics promise novel plasmonic metamaterials that are tunable in the terahertz and mid-infrared frequency ranges.4 Recently, the Majorana fermions have been verified through various kinds of topological superconductors(TSCs). In particular, the quantized and paired spin waves have been discovered in polyaromatic hydrocarbons(PAHs)5 and Majorana hinge and corner modes have been identified in the organic crystal of PAHs. Interestingly, regularity and periodicity can serve in the xy-plane of the crystal as the patterning of TSC resonators. Here, first we report experimental evidence of Majorana plasmonic excitations in a molecular topological superconductor (MTSC). It was prepared from MTSC resonators with different stacked numbers of HYLION-12. Distributing carriers into multiple MTSC resonators enhance the plasmonic resonance frequency and magnitude, which is different from the effects in a conventional semiconductor superlattice.6,7 The direct results of the unique carrier density scaling law of the resonance of massless Majorana fermions is demonstrated. Moreover, topological surface plasmon amplification by stimulated emission of radiation (SPASER) is also firstly created from the MTSC resonator. It has two mutually time-reversed chiral surface plasmon modes carrying the opposite topological charges.
Topological phases of matter lie at the heart of physics, connecting elegant mathematical principles to real materials that are believed to shape future electronic and quantum computing technologies. To date, studies in this discipline have almost exclusively been restricted to single-gap band topology because of the Fermi-Dirac filling effect. Here, we theoretically analyze and experimentally confirm a novel class of multi-gap topological phases, which we will refer to as non-Abelian topological semimetals, on kagome geometries. These unprecedented forms of matter depend on the notion of Euler class and frame charges which arise due to non-Abelian charge conversion processes when band nodes of different gaps are braided along each other in momentum space. We identify such exotic phenomena in acoustic metamaterials and uncover a rich topological phase diagram induced by the creation, braiding and recombination of band nodes. Using pump-probe measurements, we verify the non-Abelian charge conversion processes where topological charges of nodes are transferred from one gap to another. Moreover, in such processes, we discover symmetry-enforced intermediate phases featuring triply-degenerate band nodes with unique dispersions that are directly linked to the multi-gap topological invariants. Furthermore, we confirm that edge states can faithfully characterize the multi-gap topological phase diagram. Our study unveils a new regime of topological phases where multi-gap topology and non-Abelian charges of band nodes play a crucial role in understanding semimetals with inter-connected multiple bands.
Control of heat flux at small length scales is crucial for numerous solid-state devices and systems. In addition to the thermal management of information and communication devices the mastering of heat transfer channels down to the nanoscale also enable, e.g., new memory concepts, high sensitivity detectors and sensors, energy harvesters and compact solid-state refrigerators. Electronic coolers and thermal detectors for electromagnetic radiation, especially, rely on the maximization of electro-thermal response and blockade of phonon transport. In this work, we propose and demonstrate that efficient electro-thermal operation and phonon transfer blocking can be achieved in a single solid-state thermionic junction. Our experimental demonstration relies on suspended semiconductor-superconductor junctions where the electro-thermal response arises from the superconducting energy gap, and the phonon blocking naturally results from the transmission bottleneck at the junction. We suspend different size degenerately doped silicon chips (up to macroscopic scale) directly from the junctions and cool these by biasing the junctions. The electronic cooling operation characteristics are accompanied by measurement and analysis of the thermal resistance components in the structures indicating the operation principle of phonon blocking in the junctions.
107 - Yafis Barlas , Emil Prodan 2019
Non-trivial braid-group representations appear as non-Abelian quantum statistics of emergent Majorana zero modes in one and two-dimensional topological superconductors. Here, we generate such representations with topologically protected domain-wall modes in a classical analogue of the Kitaev superconducting chain, with a particle-hole like symmetry and a Z2 topological invariant. The mid-gap modes are found to exhibit distinct fusion channels and rich non-Abelian braiding properties, which are investigated using a T-junction setup. We employ the adiabatic theorem to explicitly calculate the braiding matrices for one and two pairs of these mid-gap topological defects.
We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O. and T. Senthil, Phys. Rev. Lett. 96, 060601 (2006)] which relates fraction- alization and topological order. The nontrivial groundstate degeneracy obtained by Read and Green [Phys. Rev. B 61, 10267 (2000)] based on differential geometry is reproduced exactly. Some restrictions on the statistics, due to the fractional charge of the quasiparticle are also discussed. Furthermore, the groundstate degeneracy of the p+ip superconductor in two dimensions, which is closely related to the Pfaffian states, is discussed with a similar construction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا