Minimal Regular graphs with every edge in a triangle


Abstract in English

Considering regular graphs with every edge in a triangle we prove lower bounds for the number of triangles in such graphs. For r-regular graphs with r <= 5 we exhibit families of graphs with exactly that number of triangles and then classify all such graphs using line graphs and even cycle decompositions. Examples of ways to create such r-regular graphs with r >= 6 are also given. In the 5-regular case, these minimal graphs are proven to be the only regular graphs with every edge in a triangle which cannot have an edge removed and still have every edge in a triangle.

Download