Learning electron densities in the condensed-phase


Abstract in English

We introduce a local machine-learning method for predicting the electron densities of periodic systems. The framework is based on a numerical, atom-centred auxiliary basis, which enables an accurate expansion of the all-electron density in a form suitable for learning isolated and periodic systems alike. We show that using this formulation the electron densities of metals, semiconductors and molecular crystals can all be accurately predicted using a symmetry-adapted Gaussian process regression model, properly adjusted for the non-orthogonal nature of the basis. These predicted densities enable the efficient calculation of electronic properties which present errors on the order of tens of meV/atom when compared to ab initio density-functional calculations. We demonstrate the key power of this approach by using a model trained on ice unit cells containing only 4 water molecules to predict the electron densities of cells containing up to 512 molecules, and see no increase in the magnitude of the errors of derived electronic properties when increasing the system size. Indeed, we find that these extrapolated derived energies are more accurate than those predicted using a direct machine-learning model.

Download