Revisiting the explodability of single massive star progenitors of stripped-envelope supernovae


Abstract in English

Stripped-envelope supernovae (Type IIb, Ib, Ic) showing little or no hydrogen are one of the main classes of explosions of massive stars. Their origin and the evolution of their progenitors are not fully understood as yet. Very massive single stars stripped by their own winds ($gtrsim 25-30 M_{odot}$ at solar metallicity) are considered viable progenitors of these events. However, recent 1D core-collapse simulations show that some massive stars may collapse directly onto black holes after a failed explosion, with weak or no visible transient. In this letter, we estimate the effect of direct collapse onto a black hole on the rates of stripped-envelope supernovae that arise from single stars. For this, we compute single star MESA models at solar metallicity and map their final state to their core-collapse outcome following prescriptions commonly used in population synthesis. According to our models, no single stars that have lost their entire hydrogen-rich envelope are able to explode, and only a fraction of progenitors with a thin hydrogen envelope left (IIb progenitor candidates) do, unless we invoke increased wind mass-loss rates. This result increases the existing tension between the single-star scenario for stripped-envelope supernovae and their observed rates and properties. At face value, our results point towards an even higher contribution of binary progenitors for stripped-envelope supernovae. Alternatively, they may suggest inconsistencies in the common practice of mapping different stellar models to core-collapse outcomes and/or higher overall mass loss in massive stars.

Download