No Arabic abstract
We apply moment methods to obtaining an approximate analytical solution to Knudsen layers. Based on the hyperbolic regularized moment system for the Boltzmann equation with the Shakhov collision model, we derive a linearized hyperbolic moment system to model the scenario with the Knudsen layer vicinity to a solid wall with Maxwell boundary condition. We find that the reduced system is in an even-odd parity form that the reduced system proves to be well-posed under all accommodation coefficients. We show that the system may capture the temperature jump coefficient and the thermal Knudsen layer well with only a few moments. With the increasing number of moments used, qualitative convergence of the approximate solution is observed.
Techniques are proposed for solving integral equations of the first kind with an input known not precisely. The requirement that the solution sought for includes a given number of maxima and minima is imposed. It is shown that when the deviation of the approximate input from the true one is sufficiently small and some additional conditions are fulfilled the method leads to an approximate solution that is necessarily close to the true solution. No regularization is required in the present approach. Requirements on features of the solution at integration limits are also imposed. The problem is treated with the help of an ansatz proposed for the derivative of the solution. The ansatz is the most general one compatible with the above mentioned requirements. The techniques are tested with exactly solvable examples.
This work is divide in two cases. In the first case, we consider a spin manifold $M$ as the set of fixed points of an $S^{1}$-action on a spin manifold $X$, and in the second case we consider the spin manifold $M$ as the set of fixed points of an $S^{1}$-action on the loop space of $M$. For each case, we build on $M$ a vector bundle, a connection and a set of bundle endomorphisms. These objects are used to build global operators on $M$ which define an analytical index in each case. In the first case, the analytical index is equal to the topological equivariant Atiyah Singer index, and in the second case the analytical index is equal to a topological expression where the Witten genus appears.
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get an energy eigenvalue and and the wave functions. It is found that the results in the case of constant mass are in good agreement with the ones obtained in the literature.
An eigenvalue problem relevant for non-linear sigma model with singular metric is considered. We prove the existence of a non-degenerate pure point spectrum for all finite values of the size R of the system. In the infrared (IR) regime (large R) the eigenvalues admit a power series expansion around IR critical point Rtoinfty. We compute high order coefficients and prove that the series converges for all finite values of R. In the ultraviolet (UV) limit the spectrum condenses into a continuum spectrum with a set of residual bound states. The spectrum agrees nicely with the central charge computed by the Thermodynamic Bethe Ansatz method
Motivated by practical applications in heat conduction and contaminant transport, we consider heat and mass diffusion across a perturbed interface separating two finite regions of distinct diffusivity. Under the assumption of continuity of the solution and diffusive flux at the interface, we use perturbation theory to develop an asymptotic expansion of the solution valid for small perturbations. Each term in the asymptotic expansion satisfies an initial-boundary value problem on the unperturbed domain subject to interface conditions depending on the previously determined terms in the asymptotic expansion. Demonstration of the perturbation solution is carried out for a specific, practically-relevant set of initial and boundary conditions with semi-analytical solutions of the initial-boundary value problems developed using standard Laplace transform and eigenfunction expansion techniques. Results for several choices of the perturbed interface confirm the perturbation solution is in good agreement with a standard numerical solution.