A Generalised Continuous Primitive Integral and Some of Its Applications


Abstract in English

Using the Laplace derivative a Perron type integral, the Laplace integral, is defined. Moreover, it is shown that this integral includes Perron integral and to show that the inclusion is proper, an example of a function is constructed, which is Laplace integrable but not Perron integrable. Properties of integrals such as fundamental theorem of calculus, Hakes theorem, integration by parts, convergence theorems, mean value theorems, the integral remainder form of Taylors theorem with an estimation of the remainder, are established. It turns out that concerning the Alexiewiczs norm, the space of all Laplace integrable functions is incomplete and contains the set of all polynomials densely. Applications are shown to Poisson integral, a system of generalised ordinary differential equations and higher-order generalised ordinary differential equation.

Download