Do you want to publish a course? Click here

Effective thermodynamical system of Schwarzschild-de Sitter black holes from R{e}nyi statistics

87   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It has been known that the Schwarzschild-de Sitter (Sch-dS) black hole may not be in thermal equilibrium and also be found to be thermodynamically unstable in the standard black hole thermodynamics. In the present work, we investigate the possibility to realize the thermodynamical stability of the Sch-dS black hole as an effective system by using the R{e}nyi statistics, which includes the non-extensive nature of black holes. Our results indicate that the non-extensivity allows the black hole to be thermodynamically stable which gives rise to the lower bound on the non-extensive parameter. By comparing the results to ones in the separated system approach, we find that the effective temperature is always smaller than the black hole horizon temperature and the thermodynamically stable black hole in effective approach is always larger than one in separated approach at a certain temperature. There exists only the zeroth-order phase transition from the the hot gas phase to the black hole phase for the effective system while it is possible to have the transition of both the zeroth order and the first order for the separated system.



rate research

Read More

129 - Peter Hintz , YuQing Xie 2021
We study the behavior of the quasinormal modes (QNMs) of massless and massive linear waves on Schwarzschild-de Sitter black holes as the black hole mass tends to 0. Via uniform estimates for a degenerating family of ODEs, we show that in bounded subsets of the complex plane and for fixed angular momenta, the QNMs converge to those of the static model of de Sitter space. Detailed numerics illustrate our results and suggest a number of open problems.
We compute the quasinormal spectra for scalar, Dirac and electromagnetic perturbations of the Schwarzschild-de Sitter geometry in the framework of scale-dependent gravity, which is one of the current approaches to quantum gravity. Adopting the widely used WKB semi-classical approximation, we investigate the impact on the spectrum of the angular degree, the overtone number as well as the scale-dependent parameter for fixed black hole mass and cosmological constant. We summarize our numerical results in tables, and for better visualization, we show them graphically as well. All modes are found to be stable. Our findings show that both the real part and the absolute value of the imaginary part of the frequencies increase with the parameter $epsilon$ that measures the deviation from the classical geometry. Therefore, in the framework of scale-dependent gravity the modes oscillate and decay faster in comparison with their classical counterparts.
We investigate the thermodynamics of Gauss-Bonnet black holes in asymptotically de Sitter spacetimes embedded in an isothermal cavity, via a Euclidean action approach. We consider both charged and uncharged black holes, working in the extended phase space where the cosmological constant is treated as a thermodynamic pressure. We examine the phase structure of these black holes through their free energy. In the uncharged case, we find both Hawking-Page and small-to-large black hole phase transitions, whose character depends on the sign of the Gauss-Bonnet coupling. In the charged case, we demonstrate the presence of a swallowtube, signaling a compact region in phase space where a small-to-large black hole transition occurs.
Suppose a one-dimensional isometry group acts on a space, we can consider a submergion induced by the isometry, namely we obtain an orbit space by identification of points on the orbit of the group action. We study the causal structure of the orbit space for Anti-de Sitter space (AdS) explicitely. In the case of AdS$_3$, we found a variety of black hole structure, and in the case of AdS$_5$, we found a static four-dimensional black hole, and a spacetime which has two-dimensional black hole as a submanifold.
Creation of thermal distribution of particles by a black hole is independent of the detail of gravitational collapse, making the construction of the eternal horizons suffice to address the problem in asymptotically flat spacetimes. For eternal de Sitter black holes however, earlier studies have shown the existence of both thermal and non-thermal particle creation, originating from the non-trivial causal structure of these spacetimes. Keeping this in mind we consider this problem in the context of a quasistationary gravitational collapse occurring in a $(3+1)$-dimensional eternal de Sitter, settling down to a Schwarzschild- or Kerr-de Sitter spacetime and consider a massless minimally coupled scalar field. There is a unique choice of physically meaningful `in vacuum here, defined with respect to the positive frequency cosmological Kruskal modes localised on the past cosmological horizon ${cal C^-}$, at the onset of the collapse. We define our `out vacuum at a fixed radial coordinate `close to the future cosmological horizon, ${cal C^+}$, with respect to positive frequency outgoing modes written in terms of the ordinary retarded null coordinate, $u$. We trace such modes back to ${cal C^-}$ along past directed null geodesics through the collapsing body. Some part of the wave will be reflected back without entering it due to the greybody effect. We show that these two kind of traced back modes yield the two temperature spectra and fluxes subject to the aforementioned `in vacuum. Since the coordinate $u$ used in the `out modes is not well defined on a horizon, estimate on how `close we might be to ${cal C^+}$ is given by estimating backreaction. We argue no other reasonable choice of the `out vacuum would give rise to any thermal spectra. Our conclusions remain valid for all non-Nariai class black holes, irrespective of the relative sizes of the two horizons.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا