No Arabic abstract
Dialogue policy learning, a subtask that determines the content of system response generation and then the degree of task completion, is essential for task-oriented dialogue systems. However, the unbalanced distribution of system actions in dialogue datasets often causes difficulty in learning to generate desired actions and responses. In this paper, we propose a retrieve-and-memorize framework to enhance the learning of system actions. Specially, we first design a neural context-aware retrieval module to retrieve multiple candidate system actions from the training set given a dialogue context. Then, we propose a memory-augmented multi-decoder network to generate the system actions conditioned on the candidate actions, which allows the network to adaptively select key information in the candidate actions and ignore noises. We conduct experiments on the large-scale multi-domain task-oriented dialogue dataset MultiWOZ 2.0 and MultiWOZ 2.1. Experimental results show that our method achieves competitive performance among several state-of-the-art models in the context-to-response generation task.
Motivated by the needs of resource constrained dialog policy learning, we introduce dialog policy via differentiable inductive logic (DILOG). We explore the tasks of one-shot learning and zero-shot domain transfer with DILOG on SimDial and MultiWoZ. Using a single representative dialog from the restaurant domain, we train DILOG on the SimDial dataset and obtain 99+% in-domain test accuracy. We also show that the trained DILOG zero-shot transfers to all other domains with 99+% accuracy, proving the suitability of DILOG to slot-filling dialogs. We further extend our study to the MultiWoZ dataset achieving 90+% inform and success metrics. We also observe that these metrics are not capturing some of the shortcomings of DILOG in terms of false positives, prompting us to measure an auxiliary Action F1 score. We show that DILOG is 100x more data efficient than state-of-the-art neural approaches on MultiWoZ while achieving similar performance metrics. We conclude with a discussion on the strengths and weaknesses of DILOG.
Dialogue management (DM) plays a key role in the quality of the interaction with the user in a task-oriented dialogue system. In most existing approaches, the agent predicts only one DM policy action per turn. This significantly limits the expressive power of the conversational agent and introduces unwanted turns of interactions that may challenge users patience. Longer conversations also lead to more errors and the system needs to be more robust to handle them. In this paper, we compare the performance of several models on the task of predicting multiple acts for each turn. A novel policy model is proposed based on a recurrent cell called gated Continue-Act-Slots (gCAS) that overcomes the limitations of the existing models. Experimental results show that gCAS outperforms other approaches. The code is available at https://leishu02.github.io/
Transfer learning (TL) is a promising way to improve the sample efficiency of reinforcement learning. However, how to efficiently transfer knowledge across tasks with different state-action spaces is investigated at an early stage. Most previous studies only addressed the inconsistency across different state spaces by learning a common feature space, without considering that similar actions in different action spaces of related tasks share similar semantics. In this paper, we propose a method to learning action embeddings by leveraging this idea, and a framework that learns both state embeddings and action embeddings to transfer policy across tasks with different state and action spaces. Our experimental results on various tasks show that the proposed method can not only learn informative action embeddings but accelerate policy learning.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.
This study considers the task of machine reading at scale (MRS) wherein, given a question, a system first performs the information retrieval (IR) task of finding relevant passages in a knowledge source and then carries out the reading comprehension (RC) task of extracting an answer span from the passages. Previous MRS studies, in which the IR component was trained without considering answer spans, struggled to accurately find a small number of relevant passages from a large set of passages. In this paper, we propose a simple and effective approach that incorporates the IR and RC tasks by using supervised multi-task learning in order that the IR component can be trained by considering answer spans. Experimental results on the standard benchmark, answering SQuAD questions using the full Wikipedia as the knowledge source, showed that our model achieved state-of-the-art performance. Moreover, we thoroughly evaluated the individual contributions of our model components with our new Japanese dataset and SQuAD. The results showed significant improvements in the IR task and provided a new perspective on IR for RC: it is effective to teach which part of the passage answers the question rather than to give only a relevance score to the whole passage.