Do you want to publish a course? Click here

Simulation of deterministic compartmental models for infectious diseases dynamics

121   0   0.0 ( 0 )
 Added by Kelly Iarosz
 Publication date 2021
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Infectious diseases are caused by pathogenic microorganisms and can spread through different ways. Mathematical models and computational simulation have been used extensively to investigate the transmission and spread of infectious diseases. In other words, mathematical model simulation can be used to analyse the dynamics of infectious diseases, aiming to understand the effects and how to control the spread. In general, these models are based on compartments, where each compartment contains individuals with the same characteristics, such as susceptible, exposed, infected, and recovered. In this paper, we cast further light on some classical epidemic models, reporting possible outcomes from numerical simulation. Furthermore, we provide routines in a repository for simulations.



rate research

Read More

There are often multiple diseases with cross immunity competing for vaccination resources. Here we investigate the optimal vaccination program in a two-layer Susceptible-Infected-Removed (SIR) model, where two diseases with cross immunity spread in the same population, and vaccines for both diseases are available. We identify three scenarios of the optimal vaccination program, which prevents the outbreaks of both diseases at the minimum cost. We analytically derive a criterion to specify the optimal program based on the costs for different vaccines.
A well-known characteristic of pandemics such as COVID-19 is the high level of transmission heterogeneity in the infection spread: not all infected individuals spread the disease at the same rate and some individuals (superspreaders) are responsible for most of the infections. To quantify this phenomenon requires the analysis of the effect of the variance and higher moments of the infection distribution. Working in the framework of stochastic branching processes, we derive an approximate analytical formula for the probability of an outbreak in the high variance regime of the infection distribution, verify it numerically and analyze its regime of validity in various examples. We show that it is possible for an outbreak not to occur in the high variance regime even when the basic reproduction number $R_0$ is larger than one and discuss the implications of our results for COVID-19 and other pandemics.
We extend the classical SIR model of infectious disease spread to account for time dependence in the parameters, which also include diffusivities. The temporal dependence accounts for the changing characteristics of testing, quarantine and treatment protocols, while diffusivity incorporates a mobile population. This model has been applied to data on the evolution of the COVID-19 pandemic in the US state of Michigan. For system inference, we use recent advances; specifically our framework for Variational System Identification (Wang et al., Comp. Meth. App. Mech. Eng., 356, 44-74, 2019; arXiv:2001.04816 [cs.CE]) as well as Bayesian machine learning methods.
The adoption of containment measures to reduce the amplitude of the epidemic peak is a key aspect in tackling the rapid spread of an epidemic. Classical compartmental models must be modified and studied to correctly describe the effects of forced external actions to reduce the impact of the disease. The importance of social structure, such as the age dependence that proved essential in the recent COVID-19 pandemic, must be considered, and in addition, the available data are often incomplete and heterogeneous, so a high degree of uncertainty must be incorporated into the model from the beginning. In this work we address these aspects, through an optimal control formulation of a socially structured epidemic model in presence of uncertain data. After the introduction of the optimal control problem, we formulate an instantaneous approximation of the control that allows us to derive new feedback controlled compartmental models capable of describing the epidemic peak reduction. The need for long-term interventions shows that alternative actions based on the social structure of the system can be as effective as the more expensive global strategy. The timing and intensity of interventions, however, is particularly relevant in the case of uncertain parameters on the actual number of infected people. Simulations related to data from the first wave of the recent COVID-19 outbreak in Italy are presented and discussed.
We review research papers which use game theory to model the decision making of individuals during an epidemic, attempting to classify the literature and identify the emerging trends in this field. We show that the literature can be classified based on (i) type of population modelling (compartmental or network-based), (ii) frequency of the game (non-iterative or iterative), and (iii) type of strategy adoption (self-evaluation or imitation). We highlight that the choice of model depends on many factors such as the type of immunity the disease confers, the type of immunity the vaccine confers, and size of population and level of mixing therein. We show that while early studies used compartmental modelling with self-evaluation based strategy adoption, the recent trend is to use network-based modelling with imitation-based strategy adoption. Our review indicates that game theory continues to be an effective tool to model intervention (vaccination or social distancing) decision-making by individuals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا