Do you want to publish a course? Click here

Hybrid Photonic-Plasmonic Cavities based on the Nanoparticle-on-a-Mirror Configuration

89   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hybrid photonic-plasmonic cavities have emerged as a new platform to increase light-matter interaction capable to enhance the Purcell factor in a singular way not attainable with either photonic or plasmonic cavities separately. In the hybrid cavities proposed so far, mainly consisting of metallic bow-tie antennas, the plasmonic gap sizes defined by lithography in a repeatable way are limited to minimum values approx 10 nm. Nanoparticle-on-a-mirror (NPoM) cavities are far superior to achieve the smallest possible mode volumes, as gaps smaller than 1 nm can be created. Here, we design a hybrid cavity that combines a NPoM plasmonic cavity and a dielectric-nanobeam photonic crystal cavity operating at transverse-magnetic (TM) polarization. The metallic nanoparticle can be placed very close (< 1 nm) to the upper surface of the dielectric cavity, which acts as a low-reflectivity mirror. We demonstrate through numerical calculations that this kind of hybrid plasmonic-photonic cavity architecture exhibits quality factors, Q, above 10^{3} and normalized mode volumes, V , down to 10^{ um{-3}}, thus resulting in high Purcell factors (FP approx 10^5), whilst being experimentally feasible with current technology. Our results suggest that hybrid cavities with sub-nm gaps should open new avenues for boosting light-matter interaction in nanophotonic systems.



rate research

Read More

Immense field enhancement and nanoscale confinement of light are possible within nanoparticle-on-mirror (NPoM) plasmonic resonators, which enable novel optically-activated physical and chemical phenomena, and render these nanocavities greatly sensitive to minute structural changes, down to the atomic scale. Although a few of these structural parameters, primarily linked to the nanoparticle and the mirror morphology, have been identified, the impact of molecular assembly and organization of the spacer layer between them has often been left uncharacterized. Here, we experimentally investigate how the complex and reconfigurable nature of a thiol-based self-assembled monolayer (SAM) adsorbed on the mirror surface impacts the optical properties of the NPoMs. We fabricate NPoMs with distinct molecular organizations by controlling the incubation time of the mirror in the thiol solution. Afterwards, we investigate the structural changes that occur under laser irradiation by tracking the bonding dipole plasmon mode, while also monitoring Stokes and anti-Stokes Raman scattering from the molecules as a probe of their integrity. First, we find an effective decrease in the SAM height as the laser power increases, compatible with an irreversible change of molecule orientation caused by heating. Second, we observe that the nanocavities prepared with a densely packed and more ordered monolayer of molecules are more prone to changes in their resonance compared to samples with sparser and more disordered SAMs. Our measurements indicate that molecular orientation and packing on the mirror surface play a key role in determining the stability of NPoM structures and hence highlight the under-recognized significance of SAM characterization in the development of NPoM-based applications.
We design a polarization-sensitive resonator for use in midinfrared photodetectors, utilizing a photonic crystal cavity and a single or double-metal plasmonic waveguide to achieve enhanced detector efficiency due to superior optical confinement within the active region. As the cavity is highly frequency and polarization-sensitive, this resonator structure could be used in chip-based infrared spectrometers and cameras that can distinguish among different materials and temperatures to a high degree of precision.
In a recent investigation, we studied two-dimensional point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely-high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes, and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.
Hybrid plasmonic photonic structures combine the plasmonic response with the photonic band gap, holding promise for utilization as optical switches and sensors. Here, we demonstrate the active modulation of the optical response in such structures with two different external stimuli, e.g. laser pulses and bacteria. First, we report the fabrication of a miniaturized (5 x 5 mm) indium tin oxide (ITO) grating employing femtosecond laser micromachining, and we show the possibility to modulate the photonic band gap in the visible via ultrafast photoexcitation in the infrared part of the spectrum. Note that the demonstrated time response in the picosecond range of the spectral modulation have an industrial relevance. Moreover, we manufacture one-dimensional photonic crystals consisting of a solution-processed dielectric Bragg stack exposing a top-layer of bio-active silver. We assign the bacterial responsivity of the system to polarization charges at the Ag/bacterium interface, giving rise to an overall blue shift of the photonic band gap.
325 - Lixin Ge , Liang Liu , Meng Xiao 2017
The geometric phase and topological property for one-dimensional hybrid plasmonic-photonic crystals consisting of a simple lattice of graphene sheets are investigated systematically. For transverse magnetic waves, both plasmonic and photonic modes exist in the momentum space. The accidental degeneracy point of these two kinds of modes is identified to be a diabolic point accompanied with a topological phase transition. For a closed loop around this degeneracy point, the Berry phase is Pi as a consequence of the discontinuous jump of the geometric Zak phase. The wave impedance is calculated analytically for the semi-infinite system, and the corresponding topological interface states either start from or terminate at the degeneracy point. This type of localized interface states may find potential applications in photonics and plasmonics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا