No Arabic abstract
The counting of the dimension of the space of $U(N) times U(N) times U(N)$ polynomial invariants of a complex $3$-index tensor as a function of degree $n$ is known in terms of a sum of squares of Kronecker coefficients. For $n le N$, the formula can be expressed in terms of a sum of symmetry factors of partitions of $n$ denoted $Z_3(n)$. We derive the large $n$ all-orders asymptotic formula for $ Z_3(n)$ making contact with high order results previously obtained numerically. The derivation relies on the dominance in the sum, of partitions with many parts of length $1$. The dominance of other small parts in restricted partition sums leads to related asymptotic results. The result for the $3$-index tensor observables gives the large $n$ asymptotic expansion for the counting of bipartite ribbon graphs with $n$ edges, and for the dimension of the associated Kronecker permutation centralizer algebra. We explain how the different terms in the asymptotics are associated with probability distributions over ribbon graphs. The large $n$ dominance of small parts also leads to conjectured formulae for the asymptotics of invariants for general $d$-index tensors. The coefficients of $ 1/n$ in these expansions involve Stirling numbers of the second kind along with restricted partition sums.
We study two types of probability measures on the set of integer partitions of $n$ with at most $m$ parts. The first one chooses the random partition with a chance related to its largest part only. We then obtain the limiting distributions of all of the parts together and that of the largest part as $n$ tends to infinity while $m$ is fixed or tends to infinity. In particular, if $m$ goes to infinity not fast enough, the largest part satisfies the central limit theorem. The second measure is very general. It includes the Dirichlet distribution and the uniform distribution as special cases. We derive the asymptotic distributions of the parts jointly and that of the largest part by taking limit of $n$ and $m$ in the same manner as that in the first probability measure.
We study measures of quantum information when the space spanned by the set of accessible observables is not closed under products, i.e., we consider systems where an observer may be able to measure the expectation values of two operators, $langle O_1 rangle$ and $langle O_2 rangle$, but may not have access to $langle O_1 O_2 rangle$. This problem is relevant for the study of localized quantum information in gravity since the set of approximately-local operators in a region may not be closed under arbitrary products. While we cannot naturally associate a density matrix with a state in this setting, it is still possible to define a modular operator for a state, and distinguish between two states using a relative modular operator. These operators are defined on a little Hilbert space, which parameterizes small deformations of the system away from its original state, and they do not depend on the structure of the full Hilbert space of the theory. We extract a class of relative-entropy-like quantities from the spectrum of these operators that measure the distance between states, are monotonic under contractions of the set of available observables, and vanish only when the states are equal. Consequently, these distance-measures can be used to define measures of bipartite and multipartite entanglement. We describe applications of our measures to coarse-grained and fine-grained subregion dualities in AdS/CFT and provide a few sample calculations to illustrate our formalism.
We propose to use tensor diagrams and the Fomin-Pylyavskyy conjectures to explore the connection between symbol alphabets of $n$-particle amplitudes in planar $mathcal{N}=4$ Yang-Mills theory and certain polytopes associated to the Grassmannian G(4, $n$). We show how to assign a web (a planar tensor diagram) to each facet of these polytopes. Webs with no inner loops are associated to cluster variables (rational symbol letters). For webs with a single inner loop we propose and explicitly evaluate an associated web series that contains information about algebraic symbol letters. In this manner we reproduce the results of previous analyses of $n le 8$, and find that the polytope $mathcal{C}^dagger(4,9)$ encodes all rational letters, and all square roots of the algebraic letters, of nine-particle amplitudes.
After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the $1/N$ expansion and of the large $N$ limit ($N$ being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit.
We present a systematic implementation of differential renormalization to all orders in perturbation theory. The method is applied to individual Feynamn graphs written in coordinate space. After isolating every singularity. which appears in a bare diagram, we define a subtraction procedure which consists in replacing the core of the singularity by its renormalized form givenby a differential formula. The organizationof subtractions in subgraphs relies in Bogoliubovs formula, fulfilling the requirements of locality, unitarity and Lorentz invariance. Our method bypasses the use of an intermediate regularization andautomatically delivers renormalized amplitudes which obey renormalization group equations.