Do you want to publish a course? Click here

Contact mechanics of fractal surfaces by spline assisted discretisation

101   0   0.0 ( 0 )
 Added by Dorian Hanaor
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a newly developed approach for the calculation of interfacial stiffness and contact area evolution between two rough bodies exhibiting self affine surface structures. Using spline assisted discretization to define localised contact normals and surface curvatures we interpret the mechanics of simulated non-adhesive elastic surface-profiles subjected to normal loading by examining discrete contact points as projected Hertzian spheres. The analysis of rough-to-rough contact mechanics for surface profiles exhibiting fractal structures, with fractal dimensions in the regime 1 2, reveals the significant effect of surface fractality on contact mechanics and compliance with surfaces having the same mean roughness but higher fractality showing lower contact stiffness in conditions of initial contact for a given load. The predicted linear development of true contact area with load was found to be consistent with diverse existing numerical and experimental studies. Results from this model demonstrate the applicability of the developed method for the meaningful contact analysis of hierarchical structures with implications for modelling tribological interactions between pairs of rough surfaces



rate research

Read More

We investigate the effects of roughness and fractality on the normal contact stiffness of rough surfaces. Samples of isotropically roughened aluminium surfaces are considered. The roughness and fractal dimension were altered through blasting using different sized particles. Subsequently, surface mechanical attrition treatment (SMAT) was applied to the surfaces in order to modify the surface at the microscale. The surface topology was characterised by interferometry based profilometry. The normal contact stiffness was measured through nanoindentation with a flat tip utilising the partial unloading method. We focus on establishing the relationships between surface stiffness and roughness, combined with the effects of fractal dimension. The experimental results, for a wide range of surfaces, showed that the measured contact stiffness depended very closely on surfaces root mean squared (RMS) slope and their fractal dimension, with correlation coefficients of around 90%, whilst a relatively weak correlation coefficient of 57% was found between the contact stiffness and RMS roughness.
Tribological phenomena are governed by combined effects of material properties, topology and surface-chemistry. We study the interplay of multiscale surface structures with molecular-scale interactions towards interpreting static frictional interactions at fractal interfaces. By spline-assisted-discretization we analyse asperity interactions in pairs of contacting fractal surface-profiles. For elastically deforming asperities, force analysis reveals greater friction at surfaces exhibiting higher fractality, with increasing molecular-scale friction amplifying this trend. Increasing adhesive strength yields higher overall friction at surfaces of lower fractality owing to greater true-contact-area. In systems where adhesive-type interactions play an important role, such as those where cold-welded junctions form, friction is minimised at an intermediate value of surface profile fractality found to be around 1.3 to 1.5. Results have implications for systems exhibiting evolving surface structures.
We have investigated the formation of helium droplets in two physical situations. In the first one, droplets are atomised from superfluid or normal liquid by a fast helium vapour flow. In the second, droplets of normal liquid are formed inside porous glasses during the process of helium condensation. The context, aims, and results of these experiments are reviewed, with focus on the specificity of light scattering by helium. In particular, we discuss how, for different reasons, the closeness to unity of the index of refraction of helium allows in both cases to minimise the problem of multiple scattering and obtain results which it would not be possible to get using other fluids.
We study experimentally and theoretically the equilibrium adhesive contact between a smooth glass lens and a rough rubber surface textured with spherical microasperities with controlled height and spatial distributions. Measurements of the real contact area $A$ versus load $P$ are performed under compression by imaging the light transmitted at the microcontacts. $A(P)$ is found to be non-linear and to strongly depend on the standard deviation of the asperity height distribution. Experimental results are discussed in the light of a discrete version of Fuller and Tabors (FT) original model (textit{Proceedings of the Royal Society A} textbf{345} (1975) 327), which allows to take into account the elastic coupling arising from both microasperities interactions and curvature of the glass lens. Our experimental data on microcontact size distributions are well captured by our discrete extended model. We show that the elastic coupling arising from the lens curvature has a significant contribution to the $A(P)$ relationship. Our discrete model also clearly shows that the adhesion-induced effect on $A$ remains significant even for vanishingly small pull-off forces. Last, at the local asperity length scale, our measurements show that the pressure dependence of the microcontacts density can be simply described by the original FT model.
We extend results by Stotland and Di Ventra on the phenomenon of resistive switching aided by noise. We further the analysis of the mechanism underlying the beneficial role of noise and study the EPIR (Electrical Pulse Induced Resistance) ratio dependence with noise power. In the case of internal noise we find an optimal range where the EPIR ratio is both maximized and independent of the preceding resistive state. However, when external noise is considered no beneficial effect is observed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا