Do you want to publish a course? Click here

Heat Transport in Herbertsmithite: Can a Quantum Spin Liquid Survive Disorder?

198   0   0.0 ( 0 )
 Added by Shiyan Li
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Arguably the most favorable situation for spins to enter the long-sought quantum spin liquid (QSL) state is when they sit on a kagome lattice. No consensus has been reached in theory regarding the true ground state of this promising platform. The experimental efforts, relying mostly on one archetypal material ZnCu$_3$(OH)$_6$Cl$_2$, have also led to diverse possibilities. Apart from subtle interactions in the Hamiltonian, there is the additional degree of complexity associated with disorder in the real material ZnCu$_3$(OH)$_6$Cl$_2$ that haunts most experimental probes. Here we resort to heat transport measurement, a cleaner probe in which instead of contributing directly, the disorder only impacts the signal from the kagome spins. For ZnCu$_3$(OH)$_6$Cl$_2$ and a related QSL candidate Cu$_3$Zn(OH)$_6$FBr, we observed no contribution by any spin excitation nor any field-induced change to the thermal conductivity. These results impose different constraints on various scenarios about the ground state of these two kagome compounds: while a gapped QSL, or certain quantum paramagnetic state other than a QSL, is compatible with our results, a gapless QSL must be dramatically modified by the disorder so that gapless spin excitations are localized.



rate research

Read More

73 - J. M. Ni , Q. Y. Liu , Y. J. Yu 2018
Recently, a novel material with bilayer kagome lattice Ca$_{10}$Cr$_7$O$_{28}$ was proposed to be a gapless quantum spin liquid, due to the lack of long-range magnetic order and the observation of broad diffuse excitations. Here, we present the ultralow-temperature thermal conductivity measurements on single crystals of Ca$_{10}$Cr$_7$O$_{28}$ to detect its low-lying magnetic excitations. At finite temperatures, with increasing the magnetic fields, the thermal conductivity exhibits a clear dip around 6 T, which may correspond to a crossover in the magnetic ground state. At the zero-temperature limit, no residual linear term is found at any fields, indicating the absence of gapless itinerant fermionic excitations. Therefore, if the spinons do exist, they are either localized or gapped. In the gapped case, the fitting of our data gives a small gap $Delta sim$ 0.27(2) K. These results put strong constraints on the theoretical description of the ground state in this quantum spin liquid candidate.
165 - Jiabin Liu , Long Yuan , Xuan Li 2021
The $S$ = $frac{1}{2}$ kagome Heisenberg antiferromagnet (KHA) is a leading model hosting a quantum spin liquid (QSL), but the exact nature of its ground state remains a key issue under debate. In the previously well-studied candidate materials, magnetic defects always dominate the low-energy spectrum and hinder the detection of the intrinsic nature. We demonstrate that the new single crystal of YCu$_3$[OH(D)]$_{6.5}$Br$_{2.5}$ is a perfect KHA without evident magnetic defects ($ll$ 0.8%). Through fitting the magnetic susceptibilities of the orientated single crystals, we find the spin system with weak anisotropic interactions and with first-, second-, and third-neighbor couplings, $J_1$ $sim$ 56 K and $J_2$ $sim$ $J_3$ $sim$ 0.1$J_1$, belongs to the continuous family of fully frustrated KHAs. No conventional freezing is observed down to 0.36 K $sim$ 0.006$J_1$, and the raw specific heat exhibits a nearly quadratic temperature dependence below 1 K $sim$ 0.02$J_1$, well consistent with a gapless (spin gap $leq$ 0.025$J_1$) Dirac QSL.
Quantum spin liquid (QSL) is a novel state of matter which refuses the conventional spin freezing even at 0 K. Experimentally searching for the structurally perfect candidates is a big challenge in condensed matter physics. Here we report the successful synthesis of a new spin-1/2 triangular antiferromagnet YbMgGaO$_4$ with R$bar{3}$m symmetry. The compound with an ideal two-dimensional and spatial isotropic magnetic triangular-lattice has no site-mixing magnetic defects and no antisymmetric Dzyaloshinsky-Moriya (DM) interactions. No spin freezing down to 60 mK (despite $Theta$$_w$ $sim$ -4 K), the low-T power-law temperature dependence of heat capacity and nonzero susceptibility suggest that YbMgGaO$_4$ is a promising gapless ($leq$ $|$$Theta$$_w$$|$/100) QSL candidate. The residual spin entropy, which is accurately determined with a non-magnetic reference LuMgGaO$_4$, approaches zero ($<$ 0.6 %). This indicates that the possible QSL ground state (GS) of the frustrated spin system has been experimentally achieved at the lowest measurement temperatures.
In this paper, we performed thermodynamic and electron spin resonance (ESR) measurements to study low-energy magnetic excitations, which were significantly affected by crystalline electric field (CEF) excitations due to relatively small gaps between the CEF ground state and the excited states. Based on the CEF and mean-field (MF) theories, we analyzed systematically and consistently the ESR experiments and thermodynamic measurements including susceptibility, magnetization, and heat capacity. The CEF parameters were successfully extracted by fitting high-temperature (> 20 K) susceptibilities in the ab-plane and along the c-axis, allowing to determine the Lande factors ($g_{ab,calc}$ = 5.98(7) and $g_{c,calc}$ = 2.73(3)). These values were consistent with the values of Lande factors determined by ESR experiments ($g_{ab,exp}$ = 5.69 and $g_{c,exp}$ = 2.75). By applying the CEF and MF theories to the susceptibility and magnetization results, we estimated the anisotropic spin-exchange energies and found that the CEF excitations in ce{KErTe2} played a decisive role in the magnetism above 3 K, while the low-temperature magnetism below 10 K was gradually correlated with the anisotropic spin-exchange interactions. The CEF excitations were demonstrated in the low-temperature heat capacity, where both the positions of two broad peaks and their magnetic field dependence well corroborated our calculations. The present study provides a basis to explore the enriched magnetic and electronic properties of the QSL family.
We report a comprehensive investigation of the magnetism of the $S$ = 3/2 triangular-lattice antiferromagnet, $alpha$-CrOOH(D) (delafossites green-grey powder). The nearly Heisenberg antiferromagnetic Hamiltonian ($J_1$ $sim$ 23.5 K) with a weak single-ion anisotropy of $|D|$/$J_1$ $sim$ 4.6% is quantitatively determined by fitting to the electron spin resonance (ESR) linewidth and susceptibility measured at high temperatures. The weak single-ion anisotropy interactions, possibly along with other perturbations, e.g. next-nearest-neighbor interactions, suppress the long-range magnetic order and render the system disordered, as evidenced by both the absence of any clear magnetic reflections in neutron diffraction and the presence of the dominant paramagnetic ESR signal down to 2 K ($sim$ 0.04$J_1$$S^2$), where the magnetic entropy is almost zero. The power-law behavior of specific heat ($C_m$ $sim$ $T^{2.2}$) observed below the freezing temperature of $T_f$ = 25 K in $alpha$-CrOOH or below $T_f$ = 22 K in $alpha$-CrOOD is insensitive to the external magnetic field, and thus is consistent with the theoretical prediction of a gapless U(1) Dirac quantum spin liquid (QSL) ground state. At low temperatures, the spectral weight of the low-energy continuous spin excitations accumulates at the K points of the Brillouin zone, e.g. $|mathbf{Q}|$ = 4$pi$/(3$a$), and the putative Dirac cones are clearly visible. Our work is a first step towards the understanding of the possible Dirac QSL ground state in this triangular-lattice magnet with $S$ = 3/2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا