Do you want to publish a course? Click here

Image-to-Video Generation via 3D Facial Dynamics

225   0   0.0 ( 0 )
 Added by Xiaoguang Tu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a versatile model, FaceAnime, for various video generation tasks from still images. Video generation from a single face image is an interesting problem and usually tackled by utilizing Generative Adversarial Networks (GANs) to integrate information from the input face image and a sequence of sparse facial landmarks. However, the generated face images usually suffer from quality loss, image distortion, identity change, and expression mismatching due to the weak representation capacity of the facial landmarks. In this paper, we propose to imagine a face video from a single face image according to the reconstructed 3D face dynamics, aiming to generate a realistic and identity-preserving face video, with precisely predicted pose and facial expression. The 3D dynamics reveal changes of the facial expression and motion, and can serve as a strong prior knowledge for guiding highly realistic face video generation. In particular, we explore face video prediction and exploit a well-designed 3D dynamic prediction network to predict a 3D dynamic sequence for a single face image. The 3D dynamics are then further rendered by the sparse texture mapping algorithm to recover structural details and sparse textures for generating face frames. Our model is versatile for various AR/VR and entertainment applications, such as face video retargeting and face video prediction. Superior experimental results have well demonstrated its effectiveness in generating high-fidelity, identity-preserving, and visually pleasant face video clips from a single source face image.



rate research

Read More

130 - Roy Ganz , Michael Elad 2021
The interest of the deep learning community in image synthesis has grown massively in recent years. Nowadays, deep generative methods, and especially Generative Adversarial Networks (GANs), are leading to state-of-the-art performance, capable of synthesizing images that appear realistic. While the efforts for improving the quality of the generated images are extensive, most attempts still consider the generator part as an uncorroborated black-box. In this paper, we aim to provide a better understanding and design of the image generation process. We interpret existing generators as implicitly relying on sparsity-inspired models. More specifically, we show that generators can be viewed as manifestations of the Convolutional Sparse Coding (CSC) and its Multi-Layered version (ML-CSC) synthesis processes. We leverage this observation by explicitly enforcing a sparsifying regularization on appropriately chosen activation layers in the generator, and demonstrate that this leads to improved image synthesis. Furthermore, we show that the same rationale and benefits apply to generators serving inverse problems, demonstrated on the Deep Image Prior (DIP) method.
While deep learning-based 3D face generation has made a progress recently, the problem of dynamic 3D (4D) facial expression synthesis is less investigated. In this paper, we propose a novel solution to the following question: given one input 3D neutral face, can we generate dynamic 3D (4D) facial expressions from it? To tackle this problem, we first propose a mesh encoder-decoder architecture (Expr-ED) that exploits a set of 3D landmarks to generate an expressive 3D face from its neutral counterpart. Then, we extend it to 4D by modeling the temporal dynamics of facial expressions using a manifold-valued GAN capable of generating a sequence of 3D landmarks from an expression label (Motion3DGAN). The generated landmarks are fed into the mesh encoder-decoder, ultimately producing a sequence of 3D expressive faces. By decoupling the two steps, we separately address the non-linearity induced by the mesh deformation and motion dynamics. The experimental results on the CoMA dataset show that our mesh encoder-decoder guided by landmarks brings a significant improvement with respect to other landmark-based 3D fitting approaches, and that we can generate high quality dynamic facial expressions. This framework further enables the 3D expression intensity to be continuously adapted from low to high intensity. Finally, we show our framework can be applied to other tasks, such as 2D-3D facial expression transfer.
In this work, we use facial landmarks to make the deformation for facial images more authentic. The deformation includes the expansion of eyes and the shrinking of noses, mouths, and cheeks. An advanced 106-point facial landmark detector is utilized to provide control points for deformation. Bilinear interpolation is used in the expansion and Moving Least Squares methods (MLS) including Affine Deformation, Similarity Deformation and Rigid Deformation are used in the shrinking. We compare the running time as well as the quality of deformed images using different MLS methods. The experimental results show that the Rigid Deformation which can keep other parts of the images unchanged performs better even if it takes the longest time.
We address the challenging problem of generating facial attributes using a single image in an unconstrained pose. In contrast to prior works that largely consider generation on 2D near-frontal images, we propose a GAN-based framework to generate attributes directly on a dense 3D representation given by UV texture and position maps, resulting in photorealistic, geometrically-consistent and identity-preserving outputs. Starting from a self-occluded UV texture map obtained by applying an off-the-shelf 3D reconstruction method, we propose two novel components. First, a texture completion generative adversarial network (TC-GAN) completes the partial UV texture map. Second, a 3D attribute generation GAN (3DA-GAN) synthesizes the target attribute while obtaining an appearance consistent with 3D face geometry and preserving identity. Extensive experiments on CelebA, LFW and IJB-A show that our method achieves consistently better attribute generation accuracy than prior methods, a higher degree of qualitative photorealism and preserves face identity information.
Recently, deep learning-based image enhancement algorithms achieved state-of-the-art (SOTA) performance on several publicly available datasets. However, most existing methods fail to meet practical requirements either for visual perception or for computation efficiency, especially for high-resolution images. In this paper, we propose a novel real-time image enhancer via learnable spatial-aware 3-dimentional lookup tables(3D LUTs), which well considers global scenario and local spatial information. Specifically, we introduce a light weight two-head weight predictor that has two outputs. One is a 1D weight vector used for image-level scenario adaptation, the other is a 3D weight map aimed for pixel-wise category fusion. We learn the spatial-aware 3D LUTs and fuse them according to the aforementioned weights in an end-to-end manner. The fused LUT is then used to transform the source image into the target tone in an efficient way. Extensive results show that our model outperforms SOTA image enhancement methods on public datasets both subjectively and objectively, and that our model only takes about 4ms to process a 4K resolution image on one NVIDIA V100 GPU.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا