No Arabic abstract
Binary periodic sequences with good autocorrelation property have many applications in many aspects of communication. In past decades many series of such binary sequences have been constructed. In the application of cryptography, such binary sequences are required to have larger linear complexity. Tang and Ding cite{X. Tang} presented a method to construct a series of binary sequences with period 4$n$ having optimal autocorrelation. Such sequences are interleaved by two arbitrary binary sequences with period $nequiv 3pmod 4$ and ideal autocorrelation. In this paper we present a general formula on the linear complexity of such interleaved sequences. Particularly, we show that the linear complexity of such sequences with period 4$n$ is not bigger than $2n+2$. Interleaving by several types of known binary sequences with ideal autocorrelation ($m$-sequences, Legendre, twin-prime and Halls sequences), we present many series of such sequences having the maximum value $2n+2$ of linear complexity which gives an answer of a problem raised by N. Li and X. Tang cite{N. Li}. Finally, in the conclusion section we show that it can be seen easily that the 2-adic complexity of all such interleaved sequences reaches the maximum value $log_{2}(2^{4n}-1)$.
The autocorrelation values of two classes of binary sequences are shown to be good in [6]. We study the 2-adic complexity of these sequences. Our results show that the 2-adic complexity of such sequences is large enough to resist the attack of the rational approximation algorithm.
Via interleaving Ding-Helleseth-Lam sequences, a class of binary sequences of period $4p$ with optimal autocorrelation magnitude was constructed in cite{W. Su}. Later, Fan showed that the linear complexity of this class of sequences is quite good cite{C. Fan}. Recently, Sun et al. determined the upper and lower bounds of the 2-adic complexity of such sequences cite{Y. Sun3}. We determine the exact value of the 2-adic complexity of this class of sequences. The results show that the 2-adic complexity of this class of binary sequences is close to the maximum.
The autocorrelation and the linear complexity of a key stream sequence in a stream cipher are important cryptographic properties. Many sequences with these good properties have interleaved structure, three classes of binary sequences of period $4N$ with optimal autocorrelation values have been constructed by Tang and Gong based on interleaving certain kinds of sequences of period $N$. In this paper, we use the interleaving technique to construct a binary sequence with the optimal autocorrelation of period $2N$, then we calculate its autocorrelation values and its distribution, and give a lower bound of linear complexity. Results show that these sequences have low autocorrelation and the linear complexity satisfies the requirements of cryptography.
The generalized cyclotomic binary sequences $S=S(a, b, c)$ with period $n=pq$ have good autocorrelation property where $(a, b, c)in {0, 1}^3$ and $p, q$ are distinct odd primes. For some cases, the sequences $S$ have ideal or optimal autocorrelation. In this paper we determine the autocorrelation distribution and 2-adic complexity of the sequences $S=S(a, b, c)$ for all $(a, b, c)in {0, 1}^3$ in a unified way by using group ring language and a version of quadratic Gauss sums valued in group ring $R=mathbb{Z}[Gamma]$ where $Gamma$ is a cyclic group of order $n$.
A class of binary sequences with period $2p$ is constructed using generalized cyclotomic classes, and their linear complexity, minimal polynomial over ${mathbb{F}_{{q}}}$ as well as 2-adic complexity are determined using Gauss period and group ring theory. The results show that the linear complexity of these sequences attains the maximum when $pequiv pm 1(bmod~8)$ and is equal to {$p$+1} when $pequiv pm 3(bmod~8)$ over extension field. Moreover, the 2-adic complexity of these sequences is maximum. According to Berlekamp-Massey(B-M) algorithm and the rational approximation algorithm(RAA), these sequences have quite good cryptographyic properties in the aspect of linear complexity and 2-adic complexity.