No Arabic abstract
The formation of Uranus regular moons has been suggested to be linked to the origin of its enormous spin axial tilt (~98o). A giant impact between proto-Uranus and a 2-3 M_Earth impactor could lead to a large tilt and to the formation of a debris disc, where prograde and circular satellites are accreted. The most intriguing features of the current regular Uranian satellite system is that it possesses a positive trend in the mass-distance distribution and likely also in the bulk density, implying that viscous spreading of the debris disc after the giant impact plays a crucial role in shaping the architecture of the final system. In this paper, we investigate the formation of Uranus satellites by combining results of SPH simulations for the giant impact, a 1D semi-analytic disc model for viscous spreading of the post-impact debris disc, and N-body simulations for the assembly of satellites from a disc of moonlets. Assuming the condensed rock (i.e., silicate) remains small and available to stick onto the relatively rapid growing condensed water-ice, we find that the best case in reproducing the observed mass and bulk composition of Uranus satellite system is a pure-rocky impactor with 3 M_Earth colliding with the young Uranus with an impact parameter b = 0.75. Such an oblique collision could also naturally explain Uranus large tilt and possibly, its low internal heat flux. The giant impact scenario can naturally explain the key features of Uranus and its regular moons. We therefore suggest that the Uranian satellite system formed as a result of an impact rather than from a circumplanetary disc. Objects beyond the water snow-line could be dominated by rocky objects similar to Pluto and Triton. Future missions to Uranus and its satellite system would further constrain the properties of Uranus and its moons and provide further insight on their formation processes.
Satellites of giant planets thought to form in gaseous circumplanetary disks (CPDs) during the late planet-formation phase, but it was unknown so far whether smaller mass planets, such as the ice giants could form such disks, thus moons there. We combined radiative hydrodynamical simulations with satellite population synthesis to investigate the question in the case of Uranus and Neptune. For both ice giants we found that a gaseous CPD is created at the end of their formation. The population synthesis confirmed that Uranian-like, icy, prograde satellite-system could form in these CPDs within a couple of $10^5$ years. This means that Neptune could have a Uranian-like moon-system originally that was wiped away by the capture of Triton. Furthermore, the current moons of Uranus can be reproduced by our model without the need for planet-planet impact to create a debris disk for the moons to grow. These results highlight that even ice giants -- that among the most common mass-category of exoplanets -- can also form satellites, opening a way to a potentially much larger population of exomoons than previously thought.
The large and tidally-locked classical moons of Uranus display longitudinal and planetocentric trends in their surface compositions. Spectrally red material has been detected primarily on the leading hemispheres of the outer moons, Titania and Oberon. Furthermore, detected H2O ice bands are stronger on the leading hemispheres of the classical satellites, and the leading/trailing asymmetry in H2O ice band strengths decreases with distance from Uranus. We hypothesize that the observed distribution of red material and trends in H2O ice band strengths results from infalling dust from Uranian irregular satellites. These dust particles migrate inward on slowly decaying orbits, eventually reaching the classical satellite zone, where they collide primarily with the outer moons. The latitudinal distribution of dust swept up by these moons should be fairly even across their southern and northern hemispheres. However, red material has only been detected over the southern hemispheres of these moons (subsolar latitude 81 S). Consequently, to test whether irregular satellite dust impacts drive the observed enhancement in reddening, we have gathered new ground-based data of the now observable northern hemispheres of these moons (sub-observer latitudes, 17 to 35 N). Our results and analyses indicate that longitudinal and planetocentric trends in reddening and H2O ice band strengths are broadly consistent across both southern and northern latitudes of these moons, thereby supporting our hypothesis. Utilizing a suite of numerical best fit models, we investigate the composition of the reddening agent detected on these moons, finding that both complex organics and amorphous pyroxene match the spectral slopes of our data. We also present spectra that span 2.9 to 4.1 microns, a previously unexplored wavelength range in terms of spectroscopy for the Uranian moons.
We report integrated orbital fits for the inner regular moons of Neptune based on the most complete astrometric data set to date, with observations from Earth-based telescopes, Voyager 2, and the Hubble Space Telescope covering 1981-2016. We summarize the results in terms of state vectors, mean orbital elements, and orbital uncertainties. The estimated masses of the two innermost moons, Naiad and Thalassa, are $GM_{Naiad}$= 0.0080 $pm$ 0.0043 $km^3 s^{-2}$ and $GM_{Thalassa}$=0.0236 $pm$ 0.0064 $km^3 s^{-2}$, corresponding to densities of 0.80 $pm$ 0.48 $g cm^{-3}$ and 1.23 $pm$ 0.43 $g cm^{-3}$, respectively. Our analysis shows that Naiad and Thalassa are locked in an unusual type of orbital resonance. The resonant argument 73 $dot{lambda}_{Thalassa}$-69 $dot{lambda}_{Naiad}$-4 $dot{Omega}_{Naiad}$ $approx$ 0 librates around 180 deg with an average amplitude of ~66 deg and a period of ~1.9 years for the nominal set of masses. This is the first fourth-order resonance discovered between the moons of the outer planets. More high precision astrometry is needed to better constrain the masses of Naiad and Thalassa, and consequently, the amplitude and the period of libration. We also report on a 13:11 near-resonance of Hippocamp and Proteus, which may lead to a mass estimate of Proteus provided that there are future observations of Hippocamp. Our fit yielded a value for Neptunes oblateness coefficient of $J_2$=3409.1$pm$2.9 $times 10^{-6}$.
As a consequence of the large (and growing) number of near-Earth objects discovered, some of them are lost before their orbit can be firmly established to ensure long-term recovery. A fraction of these present non-negligible chances of impact with the Earth. We present a method of targeted observations that allowed us to eliminate that risk by obtaining deep images of the area where the object would be, should it be on a collision orbit. 2006 QV89 was one of these objects, with a chance of impact with the Earth on 2019 September 9. Its position uncertainty (of the order of 1 degree) and faintness (below V$sim$24) made it a difficult candidate for a traditional direct recovery. However, the position of the virtual impactors could be determined with excellent accuracy. In July 2019, the virtual impactors of 2006 QV89 were particularly well placed, with a very small uncertainty region, and an expected magnitude of V$<$26. The area was imaged using ESOs Very Large Telescope, in the context of the ESA/ESO collaboration on Near-Earth Objects, resulting in very constraining a non-detection. This resulted in the elimination of the virtual impactor, even without effectively recovering 2006 QV89, indicating that it did not represent a threat. This method of deep non-detection of virtual impactors demonstrated a large potential to eliminate the threat of other-wise difficult to recover near-Earth objects
The origin of Uranus and Neptune remains a challenge for planet formation models. A potential explanation is that the planets formed from a population of a few planetary embryos with masses of a few Earth masses which formed beyond Saturns orbit and migrated inwards. These embryos can collide and merge to form Uranus and Neptune. In this work we revisit this formation scenario and study the outcomes of such collisions using 3D hydrodynamical simulations. We investigate under what conditions the perfect-merging assumption is appropriate, and infer the planets final masses, obliquities and rotation periods, as well as the presence of proto-satellite disks. We find that the total bound mass and obliquities of the planets formed in our simulations generally agree with N-body simulations therefore validating the perfect-merging assumption. The inferred obliquities, however, are typically different from those of Uranus and Neptune, and can be roughly matched only in a few cases. In addition, we find that in most cases the planets formed in this scenario rotate faster than Uranus and Neptune, close to break-up speed, and have massive disks. We therefore conclude that forming Uranus and Neptune in this scenario is challenging, and further research is required. We suggest that future planet formation models should aim to explain the various physical properties of the planets such as their masses, compositions, obliquities, rotation rates and satellite systems.