No Arabic abstract
In closed-loop wireless control systems, the state-of-the-art approach prescribes that a controller receives by wireless communications the individual sensor measurements, and then sends the computed control signal to the actuators. We propose an over-the-air controller scheme where all sensors attached to the plant simultaneously transmit scaled sensing signals directly to the actuator; then the feedback control signal is computed partially over the air and partially by a scaling operation at the actuator. Such over-the-air controller essentially adopts the over-the-air computation concept to compute the control signal for closed-loop wireless control systems. In contrast to the state-of-the-art sensor-to-controller and controller-to-actuator communication approach, the over-the-air controller exploits the superposition properties of multiple-access wireless channels to complete the communication and computation of a large number of sensing signals in a single communication resource unit. Therefore, the proposed scheme can obtain significant benefits in terms of low actuation delay and low wireless resource utilization by a simple network architecture that does not require a dedicated controller. Numerical results show that our proposed over-the-air controller achieves a huge widening of the stability region in terms of sampling time and delay, and a significant reduction of the computation error of the control signal.
Wide Area Cyber-Physical Systems (WA-CPSs) are a class of control systems that integrate low-powered sensors, heterogeneous actuators and computer controllers into large infrastructure that span multi-kilometre distances. Current wireless communication technologies are incapable of meeting the communication requirements of range and bounded delays needed for the control of WA-CPSs. To solve this problem, we use a Control-Communication Co-design approach for WA-CPSs, that we refer to as the $C^3$ approach, to design a novel Low-Power Wide Area (LPWA) MAC protocol called textit{Ctrl-MAC} and its associated event-triggered controller that can guarantee the closed-loop stability of a WA-CPS. This is the first paper to show that LPWA wireless communication technologies can support the control of WA-CPSs. LPWA technologies are designed to support one-way communication for monitoring and are not appropriate for control. We present this work using an example of a water distribution network application which we evaluate both through a co-simulator (modelling both physical and cyber subsystems) and testbed deployments. Our evaluation demonstrates full control stability, with up to $50$% better packet delivery ratios and $80$% less average end-to-end delays when compared to a state of the art LPWA technology. We also evaluate our scheme against an idealised, wired, centralised, control architecture and show that the controller maintains stability and the overshoots remain within bounds.
The combination of machine learning with control offers many opportunities, in particular for robust control. However, due to strong safety and reliability requirements in many real-world applications, providing rigorous statistical and control-theoretic guarantees is of utmost importance, yet difficult to achieve for learning-based control schemes. We present a general framework for learning-enhanced robust control that allows for systematic integration of prior engineering knowledge, is fully compatible with modern robust control and still comes with rigorous and practically meaningful guarantees. Building on the established Linear Fractional Representation and Integral Quadratic Constraints framework, we integrate Gaussian Process Regression as a learning component and state-of-the-art robust controller synthesis. In a concrete robust control example, our approach is demonstrated to yield improved performance with more data, while guarantees are maintained throughout.
Given a Markov decision process (MDP) and a linear-time ($omega$-regular or LTL) specification, the controller synthesis problem aims to compute the optimal policy that satisfies the specification. More recently, problems that reason over the asymptotic behavior of systems have been proposed through the lens of steady-state planning. This entails finding a control policy for an MDP such that the Markov chain induced by the solution policy satisfies a given set of constraints on its steady-state distribution. This paper studies a generalization of the controller synthesis problem for a linear-time specification under steady-state constraints on the asymptotic behavior. We present an algorithm to find a deterministic policy satisfying $omega$-regular and steady-state constraints by characterizing the solutions as an integer linear program, and experimentally evaluate our approach.
We consider the computation of resilient controllers for perturbed non-linear dynamical systems w.r.t. linear-time temporal logic specifications. We address this problem through the paradigm of Abstraction-Based Controller Design (ABCD) where a finite state abstraction of the perturbed system dynamics is constructed and utilized for controller synthesis. In this context, our contribution is twofold: (I) We construct abstractions which model the impact of occasional high disturbance spikes on the system via so called disturbance edges. (II) We show that the application of resilient reactive synthesis techniques to these abstract models results in closed loop systems which are optimally resilient to these occasional high disturbance spikes. We have implemented this resilient ABCD workflow on top of SCOTS and showcase our method through multiple robot planning examples.
In mm-wave networks, cell sizes are small due to high path and penetration losses. Mobiles need to frequently switch softly from one cell to another to preserve network connections and context. Each soft handover involves the mobile performing directional neighbor cell search, tracking cell beam, completing cell access request, and finally, context switching. The mobile must independently discover cell beams, derive timing information, and maintain beam alignment throughout the process to avoid packet loss and hard handover. We propose Silent tracker which enables a mobile to reliably manage handover events by maintaining an aligned beam until the successful handover completion. It is entirely in-band beam mechanism that does not need any side information. Experimental evaluations show that Silent Tracker maintains the mobiles receive beam aligned to the potential target base stations transmit beam till the successful conclusion of handover in three mobility scenarios: human walk, device rotation, and 20 mph vehicular speed.