Subgap dynamics of double quantum dot coupled between superconducting and normal leads


Abstract in English

Dynamical processes induced by the external time-dependent fields can provide valuable insight into the characteristic energy scales of a given physical system. We investigate them here in a nanoscopic heterostructure, consisting of the double quantum dot coupled in series to the superconducting and the metallic reservoirs, analyzing its response to (i)~abrupt bias voltage applied across the junction, (ii) sudden change of the energy levels, and imposed by (iii)~their periodic driving. We explore subgap properties of this setup which are strictly related to the in-gap quasiparticles and discuss their signatures manifested in the time-dependent charge currents. The characteristic multi-mode oscillations, their beating patters and photon-assisted harmonics reveal a rich spectrum of dynamical features that might be important for designing the superconducting qubits.

Download