We calculate analytically the entanglement and Renyi entropies, the negativity and the mutual information together with all the density and many-particle correlation functions for free bosons on a lattice in the ground state. We show that those quantities can be derived from a multinomial form of the reduced density matrix in the configuration space whose diagonal elements dictate the statistics of the particle distribution, while the off-diagonal coherence terms control the quantum fluctuations. We clarify by this analysis how to reconcile the logarithmic behavior of the entanglement entropy with the volume law of the particle number fluctuations.