Do you want to publish a course? Click here

An annular quantum gas induced by dimensional reduction on a shell

66   0   0.0 ( 0 )
 Added by Romain Dubessy
 Publication date 2021
  fields Physics
and research's language is English
 Authors Yanliang Guo




Ask ChatGPT about the research

We report the observation of dramatic consequences of dimensional reduction onto the motional state of a quantum gas restricted to a curved two-dimensional surface. We start from the ellipsoidal geometry of a dressed quadrupole trap and introduce a novel gravity compensation mechanism enabling to explore the full ellipsoid. The dimensional reduction manifests itself by the spontaneous emergence of an annular shape in the atomic distribution, due to the zero-point energy of the transverse confinement. The experimental results are compared with the solution of the three dimensional Gross-Pitaevskii equation and with a two-dimensional semi-analytical model. This work evidences how a hidden dimension can affect dramatically the embedded low dimensional system by inducing a change of topology.



rate research

Read More

We create supercurrents in annular two-dimensional Bose gases through a temperature quench of the normal-to-superfluid phase transition. We detect the amplitude and the chirality of these supercurrents by measuring spiral patterns resulting from the interference of the cloud with a central reference disk. These measurements demonstrate the stochastic nature of the supercurrents. We further measure their distribution for different quench times and compare it with the predictions based on the Kibble-Zurek mechanism.
167 - Romain Dubessy 2012
We analyze the excitation spectrum of a superfluid Bose-Einstein condensate rotating in a ring trap. We identify two important branches of the spectrum related to outer and inner edge surface modes that lead to the instability of the superfluid. Depending on the initial circulation of the annular condensate, either the outer or the inner modes become first unstable. This instability is crucially related to the superfluid nature of the rotating gas. In particular we point out the existence of a maximal circulation above which the superflow decays spontaneously, which cannot be explained by invoking the average speed of sound.
The experimental realization of 2D Bose gases with a tunable interaction strength is an important challenge for the study of ultracold quantum matter. Here we report on the realization of an optical accordion creating a lattice potential with a spacing that can be dynamically tuned between 11$,mu$m and 2$,mu$m. We show that we can load ultracold $^{87}$Rb atoms into a single node of this optical lattice in the large spacing configuration and then decrease nearly adiabatically the spacing to reach a strong harmonic confinement with frequencies larger than $omega_z/2pi=10,$kHz. Atoms are trapped in an additional flat-bottom in-plane potential that is shaped with a high resolution. By combining these tools we create custom-shaped uniform 2D Bose gases with tunable confinement along the transverse direction and hence with a tunable interaction strength.
Quantum gases of light, as photons or polariton condensates in optical microcavities, are collective quantum systems enabling a tailoring of dissipation from e.g. cavity loss. This makes them a tool to study dissipative phases, an emerging subject in quantum manybody physics. Here we experimentally demonstrate a non-Hermitian phase transition of a photon Bose-Einstein condensate to a new dissipative phase, characterized by a biexponential decay of the condensates second-order coherence. The phase transition occurs due to the emergence of an exceptional point in the quantum gas. While Bose-Einstein condensation is usually connected to ordinary lasing by a smooth crossover, the observed phase transition separates the novel, biexponential phase from both lasing and an intermediate, oscillatory condensate regime. Our findings pave the way for studies of a wide class of dissipative quantum phases, for instance in topological or lattice systems.
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system, we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا