Do you want to publish a course? Click here

Living with Neighbors. IV. Dissecting the Spin$-$Orbit Alignment of Dark Matter Halos: Interacting Neighbors and the Local Large-scale Structure

68   0   0.0 ( 0 )
 Added by Sung-Ho An
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spin$-$orbit alignment (SOA; i.e., the vector alignment between the halo spin and the orbital angular momentum of neighboring halos) provides an important clue to how galactic angular momenta develop. For this study, we extract virial-radius-wise contact halo pairs with mass ratios between 1/10 and 10 from a set of cosmological $N$-body simulations. In the spin--orbit angle distribution, we find a significant SOA in that 52.7%$pm$0.2% of neighbors are on the prograde orbit. The SOA of our sample is mainly driven by low-mass target halos ($<10^{11.5}h^{-1}M_{odot}$) with close merging neighbors, corroborating the notion that the tidal interaction is one of the physical origins of SOA. We also examine the correlation of SOA with the adjacent filament and find that halos closer to the filament show stronger SOA. Most interestingly, we discover for the first time that halos with the spin parallel to the filament experience most frequently the prograde-polar interaction (i.e., fairly perpendicular but still prograde interaction; spin--orbit angle $sim$ 70$^{circ}$). This instantly invokes the spin-flip event and the prograde-polar interaction will soon flip the spin of the halo to align it with the neighbors orbital angular momentum. We propose that the SOA originates from the local cosmic flow along the anisotropic large-scale structure, especially that along the filament, and grows further by interactions with neighbors.



rate research

Read More

We present that the spin$-$orbit alignment (SOA; i.e., the angular alignment between the spin vector of a halo and the orbital angular momentum vector of its neighbor) provides an important clue to how galactic angular momenta develop. In particular, we identify virial-radius-wise contact halo pairs with mass ratios from 1/3 to 3 in a set of cosmological $N$-body simulations, and divide them into merger and flyby subsamples according to their total (kinetic+potential) energy. In the spin$-$orbit angle distribution, we find a significant SOA in that $75.0pm0.6$ % of merging neighbors and $58.7pm0.6$ % of flybying neighbors are on the prograde orbit. The overall SOA of our sample is mainly driven by fast-rotating halos, corroborating that a well-aligned interaction spins a halo faster. More interestingly, we find for the first time a strong number excess of nearly perpendicular but still prograde interactions ($sim75^{circ}$) in the spin$-$orbit angle distribution for both the merger and flyby cases. Such prograde-polar interactions predominate for slow-rotating halos, testifying that misaligned interactions reduce the halos spin. The frequency of the prograde-polar interactions correlates with the halo mass, yet anticorrelates with the large-scale density. This instantly invokes the spin-flip phenomenon that is conditional on the mass and environment. The prograde-polar interaction will soon flip the spin of a slow-rotator to align with its neighbors orbital angular momentum. Finally, we propose a scenario that connects the SOA to the ambient large-scale structure based on the spin-flip argument.
We present a statistical analysis of flybys of dark matter halos compared to mergers using cosmological $N$-body simulations. We mainly focus on gravitationally interacting target halos with mass of $10^{10.8}-10^{13.0}h^{-1}M_{odot}$, and their neighbors are counted only when the mass ratio is 1:3$-$3:1 and the distance is less than the sum of the virial radii of target and neighbor. The neighbors are divided into the flyby or merger samples if the pairs total energy is greater or smaller, respectively, than the capture criterion with consideration of dynamical friction. The main results are as follows: (a) The flyby fraction increases by up to a factor of 50 with decreasing halo mass and by up to a factor of 400 with increasing large-scale density, while the merger fraction does not show any significant dependencies on these two parameters; (b) The redshift evolution of the flyby fraction is twofold, increasing with redshift at $0<z<1$ and remaining constant at $z>1$, while the merger fraction increases monotonically with redshift at $z=0sim4$; (c) The multiple interactions with two or more neighbors are on average flyby-dominated, and their fraction has a mass and environment dependence similar to that for the flyby fraction; (d) Given that flybys substantially outnumber mergers toward $z=0$ (by a factor of five) and the multiple interactions are flyby-dominated, the flybys contribution to galactic evolution is stronger than ever at the present epoch, especially for less massive halos and in the higher density environment. We propose a scenario that connects the evolution of the flyby and merger fractions to the hierarchical structure formation process.
(Abridged) We apply a very general statistical theorem introduced by Cramer (1936) to study the origin of the deviations of the halo spin PDF from the reference lognormal shape. We find that these deviations originate from correlations between two quantities entering the definition of spin, namely the ratio $J/M^{5/2}$ (which depends only on mass) and the total gravitational binding energy $E$. To reach this conclusion, we have made usage of the results deduced from two high spatial- and mass resolution simulations. Our simulations cover a relatively small volume and produce a sample of more than 16.000 gravitationally bound halos, each traced by at least 300 particles. We verify that our results are stable to different systematics, by comparing our results with those derived by the GIF2 and by a more recent simulation performed by Maccio et al. We find that the spin probability distribution function shows systematic deviations from a lognormal, at all redshifts z <= 1. These deviations depend on mass and redshift: at small masses they change little with redshift, and also the best lognormal fits are more stable. The J-M relationship is well described by a power law of exponent $alpha$ very near to the linear theory prediction (alpha=5/3), but systematically lower than this at z<= 0.3. We argue that the fact that deviations from a lognormal PDF are present only for high-spin halos could point to a role of large-scale tidal fields in the evolution of the spin PDF.
We explore the phenomenon commonly known as halo assembly bias, whereby dark matter halos of the same mass are found to be more or less clustered when a second halo property is considered, for halos in the mass range $3.7 times 10^{11} ; h^{-1} mathrm{M_{odot}} - 5.0 times 10^{13} ; h^{-1} mathrm{M_{odot}}$. Using the Large Suite of Dark Matter Simulations (LasDamas) we consider nine commonly used halo properties and find that a clustering bias exists if halos are binned by mass or by any other halo property. This secondary bias implies that no single halo property encompasses all the spatial clustering information of the halo population. The mean values of some halo properties depend on their halos distance to a more massive neighbor. Halo samples selected by having high values of one of these properties therefore inherit a neighbor bias such that they are much more likely to be close to a much more massive neighbor. This neighbor bias largely accounts for the secondary bias seen in halos binned by mass and split by concentration or age. However, halos binned by other mass-like properties still show a secondary bias even when the neighbor bias is removed. The secondary bias of halos selected by their spin behaves differently than that for other halo properties, suggesting that the origin of the spin bias is different than of other secondary biases.
87 - Yehuda Hoffman 2007
We study the distinct effects of Dark Matter and Dark Energy on the future evolution of nearby large scale structures using constrained N-body simulations. We contrast a model of Cold Dark Matter and a Cosmological Constant (LCDM) with an Open CDM (OCDM) model with the same matter density Omega_m =0.3 and the same Hubble constant h=0.7. Already by the time the scale factor increased by a factor of 6 (29 Gyr from now in LCDM; 78 Gyr from now in OCDM) the comoving position of the Local Group is frozen. Well before that epoch the two most massive members of the Local Group, the Milky Way and Andromeda, will merge. However, as the expansion rates of the scale factor in the two models are different, the Local Group will be receding in physical coordinates from Virgo exponentially in a LCDM model and at a roughly constant velocity in an OCDM model. More generally, in comoving coordinates the future large scale structure will look like a sharpened image of the present structure: the skeleton of the cosmic web will remain the same, but clusters will be more `isolated and the filaments will become thinner. This implies that the long-term fate of large scale structure as seen in comoving coordinates is determined primarily by the matter density. We conclude that although the LCDM model is accelerating at present due to its Dark Energy component while the OCDM model is non accelerating, their large scale structure in the future will look very similar in comoving coordinates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا