By definition, reciprocal matrices are tridiagonal $n$-by-$n$ matrices $A$ with constant main diagonal and such that $a_{i,i+1}a_{i+1,i}=1$ for $i=1,ldots,n-1$. For $nleq 6$, we establish criteria under which the numerical range generating curves (also called Kippenhahn curves) of such matrices consist of elliptical components only. As a corollary, we also provide a complete description of higher-rank numerical ranges when the criteria are met.