Do you want to publish a course? Click here

Networks of climate change: Connecting causes and consequences

91   0   0.0 ( 0 )
 Added by Petter Holme
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Understanding the causes and consequences of, and devising countermeasures to, global warming is a profoundly complex problem. Even when researchers narrow down the focus to a publishable investigation, their analysis often contains enough interacting components to require a network visualization. Networks are thus both necessary and natural elements of climate science. Furthermore, networks form a mathematical foundation for a multitude of computational and analytical techniques. We are only beginning to see the benefits of this connection between the sciences of climate change and networks. In this review, we cover use-cases of networks in the climate-change literature -- what they represent, how they are analyzed, and what insights they bring. We also discuss network data, tools, and problems yet to be explored.



rate research

Read More

The spectrum of the non-backtracking matrix plays a crucial role in determining various structural and dynamical properties of networked systems, ranging from the threshold in bond percolation and non-recurrent epidemic processes, to community structure, to node importance. Here we calculate the largest eigenvalue of the non-backtracking matrix and the associated non-backtracking centrality for uncorrelated random networks, finding expressions in excellent agreement with numerical results. We show however that the same formulas do not work well for many real-world networks. We identify the mechanism responsible for this violation in the localization of the non-backtracking centrality on network subgraphs whose formation is highly unlikely in uncorrelated networks, but rather common in real-world structures. Exploiting this knowledge we present an heuristic generalized formula for the largest eigenvalue, which is remarkably accurate for all networks of a large empirical dataset. We show that this newly uncovered localization phenomenon allows to understand the failure of the message-passing prediction for the percolation threshold in many real-world structures.
Dynamic networks exhibit temporal patterns that vary across different time scales, all of which can potentially affect processes that take place on the network. However, most data-driven approaches used to model time-varying networks attempt to capture only a single characteristic time scale in isolation --- typically associated with the short-time memory of a Markov chain or with long-time abrupt changes caused by external or systemic events. Here we propose a unified approach to model both aspects simultaneously, detecting short and long-time behaviors of temporal networks. We do so by developing an arbitrary-order mixed Markov model with change points, and using a nonparametric Bayesian formulation that allows the Markov order and the position of change points to be determined from data without overfitting. In addition, we evaluate the quality of the multiscale model in its capacity to reproduce the spreading of epidemics on the temporal network, and we show that describing multiple time scales simultaneously has a synergistic effect, where statistically significant features are uncovered that otherwise would remain hidden by treating each time scale independently.
Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-- diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically , the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.
Conventional economic analysis of stringent climate change mitigation policy generally concludes various levels of economic slowdown as a result of substantial spending on low carbon technology. Equilibrium economics however could not explain or predict the current economic crisis, which is of financial nature. Meanwhile the economic impacts of climate policy find their source through investments for the diffusion of environmental innovations, in parts a financial problem. Here, we expose how results of economic analysis of climate change mitigation policy depend entirely on assumptions and theory concerning the finance of the diffusion of innovations, and that in many cases, results are simply re-iterations of model assumptions. We show that, while equilibrium economics always predict economic slowdown, methods using non-equilibrium approaches suggest the opposite could occur. We show that the solution to understanding the economic impacts of reducing greenhouse gas emissions lies with research on the dynamics of the financial sector interacting with innovation and technology developments, economic history providing powerful insights through important analogies with previous historical waves of innovation.
We re-examine past suggestions of a close link between terrestrial climate change and the Suns transit of spiral arms in its path through the Milky Way galaxy. These links produced concrete fits, deriving the unknown spiral pattern speed from terrestrial climate correlations. We test these fits against new data on spiral structure based on CO data that does not make simplifying assumptions about symmetry and circular rotation. If we compare the times of these transits to changes in the climate of Earth, not only do the claimed correlations disappear, but also we find that they cannot be resurrected for any reasonable pattern speed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا