A Reactive Molecular Dynamics Study of Hydrogenation on Diamond Surfaces


Abstract in English

Hydrogenated diamond has been regarded as a promising material in electronic device applications, especially in field-effect transistors (FETs). However, the quality of diamond hydrogenation has not yet been established, nor has the specific orientation that would provide the optimum hydrogen coverage. In addition, most theoretical work in the literature use models with 100% hydrogenated diamond surfaces to study electronic properties, which is far from the experimentally observed hydrogen coverage. In this work, we have carried out a detailed study using fully atomistic reactive molecular dynamics (MD) simulations on low indices diamond surfaces i.e. (001), (013), (110), (113) and (111) to evaluate the quality and hydrogenation thresholds on different diamond surfaces and their possible effects on electronic properties. Our simulation results indicate that the 100% surface hydrogenation in these surfaces is hard to achieve because of the steric repulsion between the terminated hydrogen atoms. Among all the considered surfaces, the (001), (110), and (113) surfaces incorporate a larger number of hydrogen atoms and passivate the surface dangling bonds. Our results on hydrogen stability also suggest that these surfaces with optimum hydrogen coverage are robust under extreme conditions and could provide homogeneous p-type surface conductivity in the diamond surfaces, a key requirement for high-field, high-frequency device applications.

Download