No Arabic abstract
Lead-halide perovskite nanocrystals (PNCs) exhibit unique optoelectronic properties, many of which originate from a purported bright-triplet exciton fine-structure. A major impediment to measuring this fine-structure is inhomogeneous spectral broadening, which has limited most experimental studies to single-nanocrystal spectroscopies. It is shown here that the linearly-polarized single-particle selection rules in PNCs are preserved in nonlinear spectroscopies of randomly-oriented ensembles. Simulations incorporating rotational-averaging demonstrate that techniques such as transient absorption and two-dimensional coherent spectroscopy are capable of resolving exciton fine-structure in PNCs, even in the presence of inhomogeneous broadening and orientation disorder.
We propose an effective model to describe the statistical properties of exciton fine structure splitting (FSS) and polarization angle of quantum dot ensembles (QDEs). We derive the distributions of FSS and polarization angle for QDEs and show that their statistical features can be fully characterized using at most three independent measurable parameters. The effective model is confirmed using atomistic pseudopotential calculations as well as experimental measurements for several rather different QDEs. The model naturally addresses three fundamental questions that are frequently encountered in theories and experiments: (I) Why the probability of finding QDs with vanishing FSS is generally very small? (II) Why FSS and polarization angle differ dramatically from QD to QD? and (III) Is there any direct connection between FSS, optical polarization and the morphology of QDs? The answers to these fundamental questions yield a completely new physical picture for understanding optical properties of QDEs.
We investigate the excitonic dynamics in MoSe2 monolayer and bulk samples by femtosecond transient absorption microscopy. Excitons are resonantly injected by a 750-nm and 100-fs laser pulse, and are detected by a probe pulse tuned in the range of 790 - 820 nm. We observe a strong density-dependent initial decay of the exciton population in monolayers, which can be well described by the exciton-exciton annihilation. Such a feature is not observed in the bulk under comparable conditions. We also observe the saturated absorption induced by exciton phase-space filling in both monolayers and the bulk, which indicates their potential applications as saturable absorbers.
We report on polarization-resolved resonant photoluminescence (PL) spectroscopy of bright (spin-1) and dark (spin-2) excitons in colloidal CdSe nanocrystal quantum dots. Using high magnetic fields to 33 T, we resonantly excite (and selectively analyze PL from) spin-up or spin-down excitons. At low temperatures (<4K) and above ~10 T, the spectra develop a narrow, circularly polarized peak due to spin-flipped bright excitons. Its evolution with magnetic field directly reveals a large (1-2 meV), intrinsic fine structure splitting of bright excitons, due to anisotropic exchange. These findings are supported by time-resolved PL studies and polarization-resolved PL from single nanocrystals.
Several theoretical predictions have claimed that the neutral exciton of TMDCs splits into a transversal and longitudinal exciton branch, with the longitudinal one, which is the upper branch, exhibiting an extraordinary strong dispersion in the meV range within the light cone. Historically, this was linked for semiconductor quantum wells to strong far-field optical dipole coupling, or strong electronic long-range exchange interactions, describing two sides of the same coin. Recently, experiments utilizing Fourier-space spectroscopy have shown that the exciton (exciton-polariton) dispersion can indeed be measured for high-quality hexagonal-BN-encapsulated WSe2 monolayer samples and can confirm the energy scale. Here, the exciton fine-structures pseudo-spin and the valley polarization are investigated as a function of the centre-of-mass-momentum and excitation-laser detuning. For quasi-resonant excitation, a strong dispersion featuring a pronounced momentum-dependent helicity is observed. By increasing the excitation energy step-wise towards and then above the electronic band gap, the dispersion and the helicity systematically decrease due to contributions of incoherent excitons and emission from plasma. The decline of the helicity with centre-of-mass momentum can be phenomenologically modelled by the Maialle-Silva-Sham mechanism using the exciton splitting as the source of an effective magnetic field.
Fully-inorganic cesium lead halide perovskite nanocrystals (NCs) have shown to exhibit outstanding optical properties such as wide spectral tunability, high quantum yield, high oscillator strength as well as blinking-free single photon emission and low spectral diffusion. Here, we report measurements of the coherent and incoherent exciton dynamics on the 100 fs to 10 ns timescale, determining dephasing and density decay rates in these NCs. The experiments are performed on CsPbBr$_{2}$Cl NCs using transient resonant three-pulse four-wave mixing (FWM) in heterodyne detection at temperatures ranging from 5 K to 50 K. We found a low-temperature exciton dephasing time of 24.5$pm$1.0 ps, inferred from the decay of the photon-echo amplitude at 5 K, corresponding to a homogeneous linewidth (FWHM) of 54$pm$5 {mu}eV. Furthermore, oscillations in the photon-echo signal on a picosecond timescale are observed and attributed to coherent coupling of the exciton to a quantized phonon mode with 3.45 meV energy.