No Arabic abstract
Most asteroids are somewhat elongated and have non-zero lightcurve amplitudes. Such asteroids can be detected in large-scale sky surveys even if their mean magnitudes are fainter than the stated sensitivity limits. We explore the detection of elongated asteroids under a set of idealized but useful approximations. We find that objects up to 1 magnitude fainter than a surveys sensitivity limit are likely to be detected, and that the effect is most pronounced for asteroids with lightcurve amplitudes 0.1-0.4 mag.This imposes a bias on the derived size and shape distributions of the population that must be properly accounted for.
Measurements of the galaxy number density in upcoming surveys such as Euclid and the SKA will be sensitive to distortions from lensing magnification and Doppler effects, beyond the standard redshift-space distortions. The amplitude of these contributions depends sensitively on magnification bias and evolution bias in the galaxy number density. Magnification bias quantifies the change in the observed number of galaxies gained or lost by lensing magnification, while evolution bias quantifies the physical change in the galaxy number density relative to the conserved case. These biases are given by derivatives of the number density, and consequently are very sensitive to the form of the luminosity function. We give a careful derivation of the magnification and evolution biases, clarifying a number of results in the literature. We then examine the biases for a variety of surveys, encompassing optical/NIR, 21cm galaxy and 21cm intensity mapping surveys.
With the adaptive optics (AO) system on the 10 m Keck-II telescope, we acquired a high quality set of 84 images at 14 epochs of asteroid (52) Europa on 2005 January 20. The epochs covered its rotation period and, by following its changing shape and orientation on the plane of sky, we obtained its triaxial ellipsoid dimensions and spin pole location. An independent determination from images at three epochs obtained in 2007 is in good agreement with these results. By combining these two data sets, along with a single epoch data set obtained in 2003, we have derived a global fit for (52) Europa of diameters (379x330x249) +/- (16x8x10) km, yielding a volume-equivalent spherical-diameter of 315 +/- 7 km, and a rotational pole within 7 deg of [RA; Dec] = [257,+12] in an Equatorial J2000 reference frame (ECJ2000: 255,+35). Using the average of all mass determinations available forEuropa, we derive a density of 1.5 +/- 0.4, typical of C-type asteroids. Comparing our images with the shape model of Michalowski et al. (A&A 416, 2004), derived from optical lightcurves, illustrates excellent agreement, although several edge features visible in the images are not rendered by the model. We therefore derived a complete 3-D description of Europas shape using the KOALA algorithm by combining our imaging epochs with 4 stellar occultations and 49 lightcurves. We use this 3-D shape model to assess these departures from ellipsoidal shape. Flat facets (possible giant craters) appear to be less distinct on (52) Europa than on other C-types that have been imaged in detail. We show that fewer giant craters, or smaller craters, is consistent with its expected impact history. Overall, asteroid (52) Europa is still well modeled as a smooth triaxial ellipsoid with dimensions constrained by observations obtained over several apparitions.
We report new photometric lightcurve observations of the Lucy Mission target (11351) Leucus acquired during the 2017, 2018 and 2019 apparitions. We use these data in combination with stellar occultations captured during five epochs (Buie et al. 2020) to determine the sidereal rotation period, the spin axis orientation, a convex shape model, the absolute scale of the object, its geometric albedo, and a model of the photometric properties of the target. We find that Leucus is a prograde rotator with a spin axis located within a sky-projected radius of 3{deg} (1$sigma$) from J2000 Ecliptic coordinates ($lambda=208deg$, $beta=+77deg$) or J2000 Equatorial Coordinates (RA=248$deg$, Dec=+58$deg$). The sidereal period is refined to $P_{sid}=445.683pm0.007$ h. The convex shape model is irregular, with maximum dimensions of (60.8, 39.1, 27.8) km. The convex model accounts for global features of the occultation silhouettes, although minor deviations suggest that local and global concavities are present. We determine a geometric albedo $p_V=0.043pm0.002$. The derived phase curve supports a D-type classification for Leucus.
The Transit Timing Variations (TTVs) technique provides a powerful tool to detect additional planets in transiting exoplanetary systems. In this paper we show how transiting planets with significant TTVs can be systematically missed, or cataloged as false positives, by current transit search algorithms, unless they are in multi-transit systems. If the period of the TTVs, P_TTV, is longer than the time baseline of the observations and its amplitude, A_TTV, is larger than the timing precision limit of the data, transiting planet candidates are still detected, but with incorrect ephemerides. Therefore, they will be discarded during follow-up. When P_TTV is shorter than the time baseline of the observations and A_TTV is sufficiently large, constant period search algorithms find an average period for the system, which results in altered transit durations and depths in the folded light curves. Those candidates can get subsequently discarded as eclipsing binaries, grazing eclipses, or blends. Also, for large enough A_TTVs, the transits can get fully occulted by the photometric dispersion of the light curves. These detection biases could explain the observed statistical differences between the frequency of multiple systems among planets detected via other techniques and those detected via transits. We suggest that new transit search algorithms allowing for non-constant period planets should be implemented.
These lectures deal with our current knowledge of the matter distribution in the universe, focusing on how this is studied via the large-scale structure seen in galaxy surveys. We first assemble the necessary basics needed to understand the development of density fluctuations in an expanding universe, and discuss how galaxies are located within the dark-matter density field. Results from the 2dF Galaxy Redshift Survey are presented and contrasted with theoretical models. We show that the combination of large-scale structure and data on microwave-background anisotropies can eliminate almost all degeneracies, and yield a completely specified cosmological model. This is the concordance universe: a geometrically flat combination of vacuum energy and cold dark matter. The study of cosmic structure is able to establish this in a manner independent of external information, such as the Hubble diagram; this extra information can however be used to limit non-standard alternatives, such as a variable equation of state for the vacuum.