We consider the properties of a static axially symmetric wormhole described by an exact solution of Einsteins field equations and investigate how we can distinguish such a hypothetical object from a black hole. To this aim, we explore the motion of test particles and photons in the wormholes space-time and compare it with the particle dynamics in the well known space-times of Schwarzschild and Kerr black holes. We show that precise simultaneous measurement of test particle motion and photon motion may provide the means to distinguish the wormhole geometry from that of a black hole.