Do you want to publish a course? Click here

Long Text Generation by Modeling Sentence-Level and Discourse-Level Coherence

346   0   0.0 ( 0 )
 Added by Jian Guan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Generating long and coherent text is an important but challenging task, particularly for open-ended language generation tasks such as story generation. Despite the success in modeling intra-sentence coherence, existing generation models (e.g., BART) still struggle to maintain a coherent event sequence throughout the generated text. We conjecture that this is because of the difficulty for the decoder to capture the high-level semantics and discourse structures in the context beyond token-level co-occurrence. In this paper, we propose a long text generation model, which can represent the prefix sentences at sentence level and discourse level in the decoding process. To this end, we propose two pretraining objectives to learn the representations by predicting inter-sentence semantic similarity and distinguishing between normal and shuffled sentence orders. Extensive experiments show that our model can generate more coherent texts than state-of-the-art baselines.



rate research

Read More

104 - Zhe Lin , Yitao Cai , Xiaojun Wan 2021
Paraphrase generation is an important task in natural language processing. Previous works focus on sentence-level paraphrase generation, while ignoring document-level paraphrase generation, which is a more challenging and valuable task. In this paper, we explore the task of document-level paraphrase generation for the first time and focus on the inter-sentence diversity by considering sentence rewriting and reordering. We propose CoRPG (Coherence Relationship guided Paraphrase Generation), which leverages graph GRU to encode the coherence relationship graph and get the coherence-aware representation for each sentence, which can be used for re-arranging the multiple (possibly modified) input sentences. We create a pseudo document-level paraphrase dataset for training CoRPG. Automatic evaluation results show CoRPG outperforms several strong baseline models on the BERTScore and diversity scores. Human evaluation also shows our model can generate document paraphrase with more diversity and semantic preservation.
77 - Jingjing Xu , Ji Wen , Xu Sun 2017
Named Entity Recognition and Relation Extraction for Chinese literature text is regarded as the highly difficult problem, partially because of the lack of tagging sets. In this paper, we build a discourse-level dataset from hundreds of Chinese literature articles for improving this task. To build a high quality dataset, we propose two tagging methods to solve the problem of data inconsistency, including a heuristic tagging method and a machine auxiliary tagging method. Based on this corpus, we also introduce several widely used models to conduct experiments. Experimental results not only show the usefulness of the proposed dataset, but also provide baselines for further research. The dataset is available at https://github.com/lancopku/Chinese-Literature-NER-RE-Dataset
Inquisitive probing questions come naturally to humans in a variety of settings, but is a challenging task for automatic systems. One natural type of question to ask tries to fill a gap in knowledge during text comprehension, like reading a news article: we might ask about background information, deeper reasons behind things occurring, or more. Despite recent progress with data-driven approaches, generating such questions is beyond the range of models trained on existing datasets. We introduce INQUISITIVE, a dataset of ~19K questions that are elicited while a person is reading through a document. Compared to existing datasets, INQUISITIVE questions target more towards high-level (semantic and discourse) comprehension of text. We show that readers engage in a series of pragmatic strategies to seek information. Finally, we evaluate question generation models based on GPT-2 and show that our model is able to generate reasonable questions although the task is challenging, and highlight the importance of context to generate INQUISITIVE questions.
128 - Hao Xiong , Zhongjun He , Hua Wu 2018
Discourse coherence plays an important role in the translation of one text. However, the previous reported models most focus on improving performance over individual sentence while ignoring cross-sentence links and dependencies, which affects the coherence of the text. In this paper, we propose to use discourse context and reward to refine the translation quality from the discourse perspective. In particular, we generate the translation of individual sentences at first. Next, we deliberate the preliminary produced translations, and train the model to learn the policy that produces discourse coherent text by a reward teacher. Practical results on multiple discourse test datasets indicate that our model significantly improves the translation quality over the state-of-the-art baseline system by +1.23 BLEU score. Moreover, our model generates more discourse coherent text and obtains +2.2 BLEU improvements when evaluated by discourse metrics.
Expressive text encoders such as RNNs and Transformer Networks have been at the center of NLP models in recent work. Most of the effort has focused on sentence-level tasks, capturing the dependencies between words in a single sentence, or pairs of sentences. However, certain tasks, such as argumentation mining, require accounting for longer texts and complicated structural dependencies between them. Deep structured prediction is a general framework to combine the complementary strengths of expressive neural encoders and structured inference for highly structured domains. Nevertheless, when the need arises to go beyond sentences, most work relies on combining the output scores of independently trained classifiers. One of the main reasons for this is that constrained inference comes at a high computational cost. In this paper, we explore the use of randomized inference to alleviate this concern and show that we can efficiently leverage deep structured prediction and expressive neural encoders for a set of tasks involving complicated argumentative structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا