Do you want to publish a course? Click here

Assessing the Learning Behavioral Intention of Commuters in Mobility Practices

180   0   0.0 ( 0 )
 Added by Waqas Ahmed
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Learning behavior mechanism is widely anticipated in managed settings through the formal syllabus. However, heading for learning stimulus whilst daily mobility practices through urban transit is the novel feature in learning sciences. Theory of planned behavior (TPB), technology acceptance model (TAM), and service quality of transit are conceptualized to assess the learning behavioral intention (LBI) of commuters in Greater Kuala Lumpur. An online survey was conducted to understand the LBI of 117 travelers who use the technology to engage in the informal learning process during daily commuting. The results explored that all the model variables i.e., perceived ease of use, perceived usefulness, service quality, and subjective norms are significant predictors of LBI. The perceived usefulness of learning during traveling and transit service quality has a vibrant impact on LBI. The research will support the informal learning mechanism from commuters point of view. The study is a novel contribution to transport and learning literature that will open the new prospect of research in urban mobility and its connotation with personal learning and development.



rate research

Read More

As the use of machine learning (ML) models in product development and data-driven decision-making processes became pervasive in many domains, peoples focus on building a well-performing model has increasingly shifted to understanding how their model works. While scholarly interest in model interpretability has grown rapidly in research communities like HCI, ML, and beyond, little is known about how practitioners perceive and aim to provide interpretability in the context of their existing workflows. This lack of understanding of interpretability as practiced may prevent interpretability research from addressing important needs, or lead to unrealistic solutions. To bridge this gap, we conducted 22 semi-structured interviews with industry practitioners to understand how they conceive of and design for interpretability while they plan, build, and use their models. Based on a qualitative analysis of our results, we differentiate interpretability roles, processes, goals and strategies as they exist within organizations making heavy use of ML models. The characterization of interpretability work that emerges from our analysis suggests that model interpretability frequently involves cooperation and mental model comparison between people in different roles, often aimed at building trust not only between people and models but also between people within the organization. We present implications for design that discuss gaps between the interpretability challenges that practitioners face in their practice and approaches proposed in the literature, highlighting possible research directions that can better address real-world needs.
In this paper, we investigate the suitability of state-of-the-art representation learning methods to the analysis of behavioral similarity of moving individuals, based on CDR trajectories. The core of the contribution is a novel methodological framework, mob2vec, centered on the combined use of a recent symbolic trajectory segmentation method for the removal of noise, a novel trajectory generalization method incorporating behavioral information, and an unsupervised technique for the learning of vector representations from sequential data. Mob2vec is the result of an empirical study conducted on real CDR data through an extensive experimentation. As a result, it is shown that mob2vec generates vector representations of CDR trajectories in low dimensional spaces which preserve the similarity of the mobility behavior of individuals.
Curiosity is the strong desire to learn or know more about something or someone. Since learning is often a social endeavor, social dynamics in collaborative learning may inevitably influence curiosity. There is a scarcity of research, however, focusing on how curiosity can be evoked in group learning contexts. Inspired by a recently proposed theoretical framework that articulates an integrated socio-cognitive infrastructure of curiosity, in this work, we use data-driven approaches to identify fine-grained social scaffolding of curiosity in child-child interaction, and propose how they can be used to elicit and maintain curiosity in technology-enhanced learning environments. For example, we discovered sequential patterns of multimodal behaviors across group members and we describe those that maximize an individuals utility, or likelihood, of demonstrating curiosity during open-ended problem-solving in group work. We also discovered, and describe here, behaviors that directly or in a mediated manner cause curiosity related conversational behaviors in the interaction, with twice as many interpersonal causal influences compared to intrapersonal ones. We explain how these findings form a solid foundation for developing curiosity-increasing learning technologies or even assisting a human coach to induce curiosity among learners.
Smartphone-based contact-tracing apps are a promising solution to help scale up the conventional contact-tracing process. However, low adoption rates have become a major issue that prevents these apps from achieving their full potential. In this paper, we present a national-scale survey experiment ($N = 1963$) in the U.S. to investigate the effects of app design choices and individual differences on COVID-19 contact-tracing app adoption intentions. We found that individual differences such as prosocialness, COVID-19 risk perceptions, general privacy concerns, technology readiness, and demographic factors played a more important role than app design choices such as decentralized design vs. centralized design, location use, app providers, and the presentation of security risks. Certain app designs could exacerbate the different preferences in different sub-populations which may lead to an inequality of acceptance to certain app design choices (e.g., developed by state health authorities vs. a large tech company) among different groups of people (e.g., people living in rural areas vs. people living in urban areas). Our mediation analysis showed that ones perception of the public health benefits offered by the app and the adoption willingness of other people had a larger effect in explaining the observed effects of app design choices and individual differences than ones perception of the apps security and privacy risks. With these findings, we discuss practical implications on the design, marketing, and deployment of COVID-19 contact-tracing apps in the U.S.
Algorithmic systems---from rule-based bots to machine learning classifiers---have a long history of supporting the essential work of content moderation and other curation work in peer production projects. From counter-vandalism to task routing, basic machine prediction has allowed open knowledge projects like Wikipedia to scale to the largest encyclopedia in the world, while maintaining quality and consistency. However, conversations about how quality control should work and what role algorithms should play have generally been led by the expert engineers who have the skills and resources to develop and modify these complex algorithmic systems. In this paper, we describe ORES: an algorithmic scoring service that supports real-time scoring of wiki edits using multiple independent classifiers trained on different datasets. ORES decouples several activities that have typically all been performed by engineers: choosing or curating training data, building models to serve predictions, auditing predictions, and developing interfaces or automated agents that act on those predictions. This meta-algorithmic system was designed to open up socio-technical conversations about algorithms in Wikipedia to a broader set of participants. In this paper, we discuss the theoretical mechanisms of social change ORES enables and detail case studies in participatory machine learning around ORES from the 5 years since its deployment.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا