Do you want to publish a course? Click here

Variability of Artificial Neural Networks

250   0   0.0 ( 0 )
 Added by Yueyao Yu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

What makes an artificial neural network easier to train and more likely to produce desirable solutions than other comparable networks? In this paper, we provide a new angle to study such issues under the setting of a fixed number of model parameters which in general is the most dominant cost factor. We introduce a notion of variability and show that it correlates positively to the activation ratio and negatively to a phenomenon called {Collapse to Constants} (or C2C), which is closely related but not identical to the phenomenon commonly known as vanishing gradient. Experiments on a styled model problem empirically verify that variability is indeed a key performance indicator for fully connected neural networks. The insights gained from this variability study will help the design of new and effective neural network architectures.

rate research

Read More

Adding noises to artificial neural network(ANN) has been shown to be able to improve robustness in previous work. In this work, we propose a new technique to compute the pathwise stochastic gradient estimate with respect to the standard deviation of the Gaussian noise added to each neuron of the ANN. By our proposed technique, the gradient estimate with respect to noise levels is a byproduct of the backpropagation algorithm for estimating gradient with respect to synaptic weights in ANN. Thus, the noise level for each neuron can be optimized simultaneously in the processing of training the synaptic weights at nearly no extra computational cost. In numerical experiments, our proposed method can achieve significant performance improvement on robustness of several popular ANN structures under both black box and white box attacks tested in various computer vision datasets.
We present new algorithms for adaptively learning artificial neural networks. Our algorithms (AdaNet) adaptively learn both the structure of the network and its weights. They are based on a solid theoretical analysis, including data-dependent generalization guarantees that we prove and discuss in detail. We report the results of large-scale experiments with one of our algorithms on several binary classification tasks extracted from the CIFAR-10 dataset. The results demonstrate that our algorithm can automatically learn network structures with very competitive performance accuracies when compared with those achieved for neural networks found by standard approaches.
As one of the most important paradigms of recurrent neural networks, the echo state network (ESN) has been applied to a wide range of fields, from robotics to medicine, finance, and language processing. A key feature of the ESN paradigm is its reservoir --- a directed and weighted network of neurons that projects the input time series into a high dimensional space where linear regression or classification can be applied. Despite extensive studies, the impact of the reservoir network on the ESN performance remains unclear. Combining tools from physics, dynamical systems and network science, we attempt to open the black box of ESN and offer insights to understand the behavior of general artificial neural networks. Through spectral analysis of the reservoir network we reveal a key factor that largely determines the ESN memory capacity and hence affects its performance. Moreover, we find that adding short loops to the reservoir network can tailor ESN for specific tasks and optimize learning. We validate our findings by applying ESN to forecast both synthetic and real benchmark time series. Our results provide a new way to design task-specific ESN. More importantly, it demonstrates the power of combining tools from physics, dynamical systems and network science to offer new insights in understanding the mechanisms of general artificial neural networks.
A major challenge in both neuroscience and machine learning is the development of useful tools for understanding complex information processing systems. One such tool is probes, i.e., supervised models that relate features of interest to activation patterns arising in biological or artificial neural networks. Neuroscience has paved the way in using such models through numerous studies conducted in recent decades. In this work, we draw insights from neuroscience to help guide probing research in machine learning. We highlight two important design choices for probes $-$ direction and expressivity $-$ and relate these choices to research goals. We argue that specific research goals play a paramount role when designing a probe and encourage future probing studies to be explicit in stating these goals.
Artificial Neural Networks (ANNs) are known as state-of-the-art techniques in Machine Learning (ML) and have achieved outstanding results in data-intensive applications, such as recognition, classification, and segmentation. These networks mostly use deep layers of convolution or fully connected layers with many filters in each layer, demanding a large amount of data and tunable hyperparameters to achieve competitive accuracy. As a result, storage, communication, and computational costs of training (in particular training time) become limiting factors to scale them up. In this paper, we propose a new training methodology for ANNs that exploits the observation of improvement of accuracy shows temporal variations which allow us to skip updating weights when the variation is minuscule. During such time windows, we keep updating bias which ensures the network still trains and avoids overfitting; however, we selectively skip updating weights (and their time-consuming computations). Such a training approach virtually achieves the same accuracy with considerably less computational cost, thus lower training time. We propose two methods for updating weights and evaluate them by analyzing four state-of-the-art models, AlexNet, VGG-11, VGG-16, ResNet-18 on CIFAR datasets. On average, our two proposed methods called WUS and WUS+LR reduced the training time (compared to the baseline) by 54%, and 50%, respectively on CIFAR-10; and 43% and 35% on CIFAR-100, respectively.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا