Do you want to publish a course? Click here

GPR: Grasp Pose Refinement Network for Cluttered Scenes

94   0   0.0 ( 0 )
 Added by Wei Wei
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Object grasping in cluttered scenes is a widely investigated field of robot manipulation. Most of the current works focus on estimating grasp pose from point clouds based on an efficient single-shot grasp detection network. However, due to the lack of geometry awareness of the local grasping area, it may cause severe collisions and unstable grasp configurations. In this paper, we propose a two-stage grasp pose refinement network which detects grasps globally while fine-tuning low-quality grasps and filtering noisy grasps locally. Furthermore, we extend the 6-DoF grasp with an extra dimension as grasp width which is critical for collisionless grasping in cluttered scenes. It takes a single-view point cloud as input and predicts dense and precise grasp configurations. To enhance the generalization ability, we build a synthetic single-object grasp dataset including 150 commodities of various shapes, and a multi-object cluttered scene dataset including 100k point clouds with robust, dense grasp poses and mask annotations. Experiments conducted on Yumi IRB-1400 Robot demonstrate that the model trained on our dataset performs well in real environments and outperforms previous methods by a large margin.



rate research

Read More

Grasp detection with consideration of the affiliations between grasps and their owner in object overlapping scenes is a necessary and challenging task for the practical use of the robotic grasping approach. In this paper, a robotic grasp detection algorithm named ROI-GD is proposed to provide a feasible solution to this problem based on Region of Interest (ROI), which is the region proposal for objects. ROI-GD uses features from ROIs to detect grasps instead of the whole scene. It has two stages: the first stage is to provide ROIs in the input image and the second-stage is the grasp detector based on ROI features. We also contribute a multi-object grasp dataset, which is much larger than Cornell Grasp Dataset, by labeling Visual Manipulation Relationship Dataset. Experimental results demonstrate that ROI-GD performs much better in object overlapping scenes and at the meantime, remains comparable with state-of-the-art grasp detection algorithms on Cornell Grasp Dataset and Jacquard Dataset. Robotic experiments demonstrate that ROI-GD can help robots grasp the target in single-object and multi-object scenes with the overall success rates of 92.5% and 83.8% respectively.
Recent advances in on-policy reinforcement learning (RL) methods enabled learning agents in virtual environments to master complex tasks with high-dimensional and continuous observation and action spaces. However, leveraging this family of algorithms in multi-fingered robotic grasping remains a challenge due to large sim-to-real fidelity gaps and the high sample complexity of on-policy RL algorithms. This work aims to bridge these gaps by first reinforcement-learning a multi-fingered robotic grasping policy in simulation that operates in the pixel space of the input: a single depth image. Using a mapping from pixel space to Cartesian space according to the depth map, this method transfers to the real world with high fidelity and introduces a novel attention mechanism that substantially improves grasp success rate in cluttered environments. Finally, the direct-generative nature of this method allows learning of multi-fingered grasps that have flexible end-effector positions, orientations and rotations, as well as all degrees of freedom of the hand.
This paper proposes a new deep learning approach to antipodal grasp detection, named Double-Dot Network (DD-Net). It follows the recent anchor-free object detection framework, which does not depend on empirically pre-set anchors and thus allows more generalized and flexible prediction on unseen objects. Specifically, unlike the widely used 5-dimensional rectangle, the gripper configuration is defined as a pair of fingertips. An effective CNN architecture is introduced to localize such fingertips, and with the help of auxiliary centers for refinement, it accurately and robustly infers grasp candidates. Additionally, we design a specialized loss function to measure the quality of grasps, and in contrast to the IoU scores of bounding boxes adopted in object detection, it is more consistent to the grasp detection task. Both the simulation and robotic experiments are executed and state of the art accuracies are achieved, showing that DD-Net is superior to the counterparts in handling unseen objects.
205 - Yiming Li , Tao Kong , Ruihang Chu 2021
Grasping in cluttered scenes has always been a great challenge for robots, due to the requirement of the ability to well understand the scene and object information. Previous works usually assume that the geometry information of the objects is available, or utilize a step-wise, multi-stage strategy to predict the feasible 6-DoF grasp poses. In this work, we propose to formalize the 6-DoF grasp pose estimation as a simultaneous multi-task learning problem. In a unified framework, we jointly predict the feasible 6-DoF grasp poses, instance semantic segmentation, and collision information. The whole framework is jointly optimized and end-to-end differentiable. Our model is evaluated on large-scale benchmarks as well as the real robot system. On the public dataset, our method outperforms prior state-of-the-art methods by a large margin (+4.08 AP). We also demonstrate the implementation of our model on a real robotic platform and show that the robot can accurately grasp target objects in cluttered scenarios with a high success rate. Project link: https://openbyterobotics.github.io/sscl
Reliable robotic grasping in unstructured environments is a crucial but challenging task. The main problem is to generate the optimal grasp of novel objects from partial noisy observations. This paper presents an end-to-end grasp detection network taking one single-view point cloud as input to tackle the problem. Our network includes three stages: Score Network (SN), Grasp Region Network (GRN), and Refine Network (RN). Specifically, SN regresses point grasp confidence and selects positive points with high confidence. Then GRN conducts grasp proposal prediction on the selected positive points. RN generates more accurate grasps by refining proposals predicted by GRN. To further improve the performance, we propose a grasp anchor mechanism, in which grasp anchors with assigned gripper orientations are introduced to generate grasp proposals. Experiments demonstrate that REGNet achieves a success rate of 79.34% and a completion rate of 96% in real-world clutter, which significantly outperforms several state-of-the-art point-cloud based methods, including GPD, PointNetGPD, and S4G. The code is available at https://github.com/zhaobinglei/REGNet_for_3D_Grasping.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا